Innovative Strategies for Estimating Postmortem Interval in Forensic Practice: Multi-Omics, Artificial Intelligence, and Combined Models



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Determining the time since death (postmortem interval, PMI) is one of the key challenges in forensic practice, as the accuracy of this estimation directly affects the reliability of expert conclusions and the efficiency of investigative procedures. Traditional methods based on morphological signs and thermometric measurements have limited accuracy, particularly at extended intervals. Recent research focuses on the development of innovative approaches, including molecular technologies, microbiome analysis, multi-omics strategies, and the integration of artificial intelligence for big data processing. This article provides an overview of the latest methods for estimating PMI, with particular attention to nucleic acids (DNA, RNA), proteomics, metabolomics, and microbiome profiling. The potential of immunohistochemical markers, mass spectrometry, and nuclear magnetic resonance for quantitative assessment of biochemical changes in tissues and biological fluids is discussed. Advances in forensic entomology are also highlighted, including the application of molecular and chemical techniques for validating insect developmental stages.
A separate section addresses the implementation of machine learning and deep learning algorithms to build predictive models based on multifactorial datasets, including microbiome profiles, imaging data, and environmental parameters. Examples of combined approaches integrating biomolecular markers with computational technologies are presented, demonstrating improved accuracy in PMI estimation during both early and advanced decomposition stages. The integration of traditional and innovative methods, the development of standardized protocols, and interdisciplinary collaboration open new opportunities for forensic medicine, forming a basis for creating reliable, reproducible, and universal algorithms for PMI assessment.

全文:

受限制的访问

作者简介

Gulgena Mustafina

Email: gulgenarm@mail.ru
ORCID iD: 0000-0003-2534-6385
SPIN 代码: 8904-2046

Kirill Kuznetsov

N.I. Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: kuznetsovarticles@mail.ru
ORCID iD: 0000-0002-2405-1801
SPIN 代码: 3053-3773
俄罗斯联邦

Svetlana Kosobutskaya

Email: fotinia78@mail.ru
ORCID iD: 0000-0002-5484-9574
SPIN 代码: 2589-3752

Maksim Sokolovkiy

Email: maks_sokolovskiy@internet.ru
ORCID iD: 0009-0005-4998-3532

Alvina Semenova

Email: semyonowaalvina@yandex.ru
ORCID iD: 0009-0009-7823-9322

Valery Korotun

Email: korotun_vn@mail.ru
ORCID iD: 0000-0001-9654-3269

参考

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81753 выдано 09.09.2021 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 – 59181 выдано 03.09.2014
г.



##common.cookie##