Инновационные стратегии установления давности наступления смерти в экспертной практике: мультиомика, искусственный интеллект и комбинированные модели
- Авторы: Мустафина Г.Р., Кузнецов К.О.1, Кособуцкая С.А.1, Соколовский М.А.1, Семенова А.И.1, Коротун В.Н.1
-
Учреждения:
- N.I. Pirogov Russian National Research Medical University
- Раздел: Научные обзоры
- Дата подачи: 25.07.2025
- Дата принятия к публикации: 13.10.2025
- Дата публикации: 27.10.2025
- URL: https://for-medex.ru/jour/article/view/16307
- DOI: https://doi.org/10.17816/fm16307
- ID: 16307
Цитировать
Полный текст
Аннотация
Определение давности наступления смерти (ДНС) является одной из ключевых задач судебно-медицинской практики, от точности решения которой зависит объективность экспертных заключений и эффективность следственных действий. Традиционные методы, основанные на оценке морфологических признаков и термометрии, обладают ограниченной точностью, особенно при длительных интервалах. Современные исследования направлены на разработку инновационных подходов, включающих молекулярные технологии, анализ микробиоты, применение мультиомных стратегий, а также интеграцию искусственного интеллекта для обработки больших данных. В статье представлен обзор новейших методов оценки ДНС, среди которых особое внимание уделено анализу нуклеиновых кислот (ДНК, РНК), протеомики, метаболомики, а также исследованию микробиомных изменений. Рассматриваются возможности использования иммуногистохимических маркеров, масс-спектрометрии и ядерного магнитного резонанса для количественного анализа биохимических изменений в тканях и биологических жидкостях. Освещены перспективы судебной энтомологии с применением молекулярных и химических методов для верификации возраста насекомых и стадий разложения. Отдельный раздел посвящен внедрению алгоритмов машинного обучения и глубинного анализа данных (ML/DL) для построения предиктивных моделей на основе мультифакторных данных, включая микробиомные профили, визуализационные признаки и климатические параметры. Приводятся примеры комбинированных подходов, сочетающих биомолекулярные маркеры и вычислительные технологии, обеспечивающих повышение точности оценки ДНС как на ранних, так и на поздних стадиях разложения. Интеграция традиционных и инновационных методов, развитие стандартизированных протоколов и междисциплинарное сотрудничество открывают новые возможности для судебной медицины, формируя основу для создания надежных, воспроизводимых и универсальных алгоритмов оценки ДНС.
Полный текст
Об авторах
Гульгена Раисовна Мустафина
Email: gulgenarm@mail.ru
ORCID iD: 0000-0003-2534-6385
SPIN-код: 8904-2046
Кирилл Олегович Кузнецов
N.I. Pirogov Russian National Research Medical University
Автор, ответственный за переписку.
Email: kuznetsovarticles@mail.ru
ORCID iD: 0000-0002-2405-1801
SPIN-код: 3053-3773
Россия
Светлана Александровна Кособуцкая
Email: fotinia78@mail.ru
ORCID iD: 0000-0002-5484-9574
SPIN-код: 2589-3752
Максим Александрович Соколовский
Email: maks_sokolovskiy@internet.ru
ORCID iD: 0009-0005-4998-3532
Альвина Ивановна Семенова
Email: semyonowaalvina@yandex.ru
ORCID iD: 0009-0009-7823-9322
Валерий Николаевич Коротун
Email: korotun_vn@mail.ru
ORCID iD: 0000-0001-9654-3269
Список литературы
- 1. Индиаминов С.И., Жуманов З.Э., Блинова С.А. Проблемы установления давности наступления смерти. Судебно-медицинская экспертиза. 2020;63(6):45‑50.
- [Indiaminov SI, Zhumanov ZE, Blinova SA. Problems of establishing the prescription of death. Forensic Medical Expertise. 2020;63(6):45‑50. (In Russ.)]
- doi: 10.17116/sudmed20206306145
- 2. Лаврукова О.С., Казакова Е.Л., Поляков А.Ю. Посмертные изменения тканей и динамика их импедансометрических показателей: доклиническое экспериментальное исследование. Кубанский научный медицинский вестник. 2023;30(5):77-86. [Lavrukova O.S., Kazakova E.L., Polyakov A.Yu. Postmortem tissue changes and dynamics of their impedance parameters: a preclinical experimental study. Kuban Scientific Medical Bulletin. 2023;30(5):77-86. (In Russ.)]. doi: 10.25207/1608-6228-2023-30-5-77-86
- 3. Буромский И.В., Сидоренко Е.С., Ермакова Ю.В. Современное состояние и пути дальнейшего совершенствования установления давности наступления смерти. Судебно-медицинская экспертиза. 2018;61(4):59‑62. [Buromskiĭ IV, Sidorenko ES, Ermakova IuV. The current state of the establishment of prescription of death coming and the ways to its further. Forensic Medical Expertise. 2018;61(4):59‑62. (In Russ.)]
- doi: 10.17116/sudmed201861459
- 4. Халиков А.А., Кильдюшов Е.М., Кузнецов К.О., Рахматуллина Г.Р. Определение давности наступления смерти с помощью посмертного микробиома: современный взгляд и подходы к решению проблемы. Судебно-медицинская экспертиза. 2022;65(3):49‑53. [Khalikov AA, Kildyushov EM, Kuznetsov KO, Rahmatullina GR. Estimation of time since death with the postmortem microbiome: a modern view and approaches to solving the problem. Forensic Medical Expertise. 2022;65(3):49‑53. (In Russ.)]
- doi: 10.17116/sudmed20226503149
- 5. Попов В.Л., Лаврукова О.С. К вопросу о комплексной диагностике давности наступления смерти в позднем посмертном периоде. Судебно-медицинская экспертиза. 2021;64(4):30‑36.
- Popov VL, Lavrukova OS. On the issue of a comprehensive diagnosis of death coming in the late postmortem period. Forensic Medical Expertise. 2021;64(4):30‑36. (In Russ.)
- doi: 10.17116/sudmed20216404130
- 6. Халиков А.А., Аминева Г.М., Кузнецов К.О., и др. Влияние факторов индивидуальности (пол, возраст, категория смерти) на показатели биофизической объективизации прижизненных повреждений гнилостно измененного трупа. Судебно-медицинская экспертиза. 2021;64(4):25‑29.
- [Khalikov AA, Amineva GM, Kuznetsov KO, et al. Personality factors’ influence (gender, age, death category) on indicators of biophysical objectification of intra-vital injuries of a putrefactive corpse. Forensic Medical Expertise. 2021;64(4):25‑29. (In Russ.)]
- doi: 10.17116/sudmed20216404125
- 7. Madea B. Methods for determining time of death. Forensic Sci Med Pathol. 2016;12(4):451-485. doi: 10.1007/s12024-016-9776-y.
- 8. Kim JY, Kim Y, Cha HK, et al. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications. Mol Cells. 2017;40(6):410-417. doi: 10.14348/molcells.2017.0039
- 9. Li C, Wang Q, Zhang Y, et al. Research progress in the estimation of the postmortem interval by Chinese forensic scholars. Forensic Sci Res. 2016;1(1):3-13. doi: 10.1080/20961790.2016.1229377.
- 10. Cianci V, Mondello C, Sapienza D, et al. Potential Role of mRNA in Estimating Postmortem Interval: A Systematic Review. Int J Mol Sci. 2024;25(15):8185. doi: 10.3390/ijms25158185
- 11. Scrivano S, Sanavio M, Tozzo P, Caenazzo L. Analysis of RNA in the estimation of post-mortem interval: a review of current evidence. Int J Legal Med. 2019;133(6):1629-1640. doi: 10.1007/s00414-019-02125-x.
- 12. Sangwan A, Singh SP, Singh P, et al. Role of molecular techniques in PMI estimation: An update. J Forensic Leg Med. 2021;83:102251. doi: 10.1016/j.jflm.2021.102251
- 13. Садыков МБ, Бегалиев ЕН, Бахтеев ДВ, и др. Применение искусственного интеллекта и чипирования человека в судебно-медицинской экспертизе: научный обзор. Судебная медицина. 2024;10(1):88-98. [Sadykov MB, Begaliyev YN, Bakhteev DV, et al. Use of artificial intelligence and human chipping in forensic medicine: a review. Russian Journal of Forensic Medicine. 2024;10(1):88-98]. doi: 10.17816/fm16093
- 14. Reither JB, Gray E, Durdle A, et al. Investigation into the prevalence of background DNA on flooring within houses and its transfer to a contacting surface. Forensic Sci Int. 2021;318:110563. doi: 10.1016/j.forsciint.2020.110563
- 15. Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel). 2023;14(8):1643. doi: 10.3390/genes14081643.
- 16. Higgins D, Rohrlach AB, Kaidonis J, et al. Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies. PLoS One. 2015;10(5):e0126935. doi: 10.1371/journal.pone.0126935.
- 17. Freire-Aradas A, Fondevila M, Kriegel AK, et al. A new SNP assay for identification of highly degraded human DNA. Forensic Sci Int Genet. 2012;6(3):341-9. doi: 10.1016/j.fsigen.2011.07.010
- 18. Иванов П.Л., Леонов С.Н., Земскова Е.Ю., и др. Мультилокусное генотипирование полиморфных STR-локусов хромосомной ДНК в единичных клетках: трудности технологий. Судебно-медицинская экспертиза. 2013;56(5):19‑23. [Ivanov PL, Leonov SN, Zemskova EIu, et al. Multilocus genotyping of polymorphous STR-loci of chromosomal DNA in individual cells: technical difficulties. Forensic Medical Expertise. 2013;56(5):19‑23. (In Russ.)]
- 19. Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA--a review. Forensic Sci Int Genet. 2010;4(3):148-57. doi: 10.1016/j.fsigen.2009.09.007.
- 20. Kumar N, Aparna R, Sharma S. Effect of postmortem interval and conditions of teeth on STR based DNA profiling from unidentified dead bodies. J Forensic Leg Med. 2021;83:102246. doi: 10.1016/j.jflm.2021.102246.
- 21. Bianchi I, Grassi S, Nardi E, et al. Dental DNA Mutations Occurring after Death: A Novel Method for Post-Mortem Interval (PMI) Estimation. Int J Mol Sci. 2024;25(16):8832. doi: 10.3390/ijms25168832.
- 22. Bianchi I, Grassi S, Castiglione F, Bartoli C, De Saint Pierre B, Focardi M, Oliva A, Pinchi V. Dental DNA as an Indicator of Post-Mortem Interval (PMI): A Pilot Research. Int J Mol Sci. 2022;23(21):12896. doi: 10.3390/ijms232112896.
- 23. Akbulut N, Çetin S, Bilecenoğlu B, et al. The micro-CT evaluation of enamel-cement thickness, abrasion, and mineral density in teeth in the postmortem interval (PMI): new parameters for the determination of PMI. Int J Legal Med. 2020;134(2):645-653. doi: 10.1007/s00414-019-02104-2.
- 24. Mansour H, Krebs O, Pinnschmidt HO, Griem N, Hammann-Ehrt I, Püschel K. Factors affecting dental DNA in various real post-mortem conditions. Int J Legal Med. 2019;133(6):1751-1759. doi: 10.1007/s00414-019-02151-9.
- 25. Gross JA, Nagy C, Lin L, et al. Global and Site-Specific Changes in 5-Methylcytosine and 5-Hydroxymethylcytosine after Extended Post-mortem Interval. Front Genet. 2016;7:120. doi: 10.3389/fgene.2016.00120.
- 26. M. Mohamed, M. El Sherbeny, D. Farag A comparative study of two gel-based techniques to detect the relationship between post-mortem interval and nuclear DNA degradation in different tissues In Albino Rats. Egypt Dent. J. 2020; 66: 175-186. doi: 10.21608/edj.2020.77533
- 27. Williams T, Soni S, White J, Can G, Javan GT. Evaluation of DNA degradation using flow cytometry: promising tool for postmortem interval determination. Am J Forensic Med Pathol. 2015;36(2):104-10. doi: 10.1097/PAF.0000000000000146.
- 28. Larkin B, Iaschi S, Dadour I, Tay GK. Using accumulated degree-days to estimate postmortem interval from the DNA yield of porcine skeletal muscle. Forensic Sci Med Pathol. 2010;6(2):83-92. doi: 10.1007/s12024-009-9109-5.
- 29. Pérez-Martínez C, Pérez-Cárceles MD, Legaz I, et al. Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains. Forensic Sci Int. 2017;281:106-112. doi: 10.1016/j.forsciint.2017.10.039.
- 30. Weis S, Llenos IC, Dulay JR, et al. Quality control for microarray analysis of human brain samples: The impact of postmortem factors, RNA characteristics, and histopathology. J Neurosci Methods. 2007;165(2):198-209. doi: 10.1016/j.jneumeth.2007.06.001.
- 31. Bauer M, Gramlich I, Polzin S, Patzelt D. Quantification of mRNA degradation as possible indicator of postmortem interval--a pilot study. Leg Med (Tokyo). 2003;5(4):220-7. doi: 10.1016/j.legalmed.2003.08.001.
- 32. Bauer M, Polzin S, Patzelt D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int. 2003;138(1-3):94-103. doi: 10.1016/j.forsciint.2003.09.008.
- 33. Sampaio-Silva F, Magalhães T, Carvalho F, et al. Profiling of RNA degradation for estimation of post mortem [corrected] interval. PLoS One. 2013;8(2):e56507. doi: 10.1371/journal.pone.0056507.
- 34. Wang H, Ma J, Xu H, et al. Early postmortem interval (EPMI) estimation using differentially expressed gene transcripts. Leg Med (Tokyo). 2019;38:83-91. doi: 10.1016/j.legalmed.2019.04.008.
- 35. Lv YH, Ma JL, Pan H, et al. RNA degradation as described by a mathematical model for postmortem interval determination. J Forensic Leg Med. 2016;44:43-52. doi: 10.1016/j.jflm.2016.08.015.
- 36. Heinrich M, Lutz-Bonengel S, Matt K, Schmidt U. Real-time PCR detection of five different "endogenous control gene" transcripts in forensic autopsy material. Forensic Sci Int Genet. 2007;1(2):163-9. doi: 10.1016/j.fsigen.2007.01.002.
- 37. Li WC, Ma KJ, Lv YH, et al. Postmortem interval determination using 18S-rRNA and microRNA. Sci Justice. 2014;54(4):307-10. doi: 10.1016/j.scijus.2014.03.001.
- 38. Tu C, Du T, Ye X, et al. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg Med (Tokyo). 2019;38:51-57. doi: 10.1016/j.legalmed.2019.04.002.
- 39. Young ST, Wells JD, Hobbs GR, Bishop CP. Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci Int. 2013;229(1-3):163.e1-6. doi: 10.1016/j.forsciint.2013.03.035
- 40. Young ST, Wells JD, Hobbs GR, Bishop CP. Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci Int. 2013;229(1-3):163.e1-6. doi: 10.1016/j.forsciint.2013.03.035.
- 41. Martínez-Rivera V, Cárdenas-Monroy CA, Millan-Catalan O, et al. Dysregulation of miR-381-3p and miR-23b-3p in skeletal muscle could be a possible estimator of early post-mortem interval in rats. PeerJ. 2021;9:e11102. doi: 10.7717/peerj.11102.
- 42. Sharma S, Singh D, Kaul D. AATF RNome has the potential to define post mortem interval. Forensic Sci Int. 2015;247:e21-4. doi: 10.1016/j.forsciint.2014.12.008.
- 43. Deng W., Lv M., Wang L., et al. Zhang mRNA degradation pattern analysis in post-mortem normalized using the DNA Forensic Sci. Int. Genet. Suppl. Ser. 2013; 4: 266-267.
- 44. Stollar EJ, Smith DP. Uncovering protein structure. Essays Biochem. 2020;64(4):649-680. doi: 10.1042/EBC20190042.
- 45. Huang W, Zhao S, Liu H, et al. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. Int J Mol Sci. 2024;25(3):1659. doi: 10.3390/ijms25031659.
- 46. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347-55. doi: 10.1038/nature19949.
- 47. Sakurada K, Watanabe K, Akutsu T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics (Basel). 2020;10(9):693. doi: 10.3390/diagnostics10090693.
- 48. Parker GJ, McKiernan HE, Legg KM, Goecker ZC. Forensic proteomics. Forensic Sci Int Genet. 2021;54:102529. doi: 10.1016/j.fsigen.2021.102529
- 49. Kang S, Kassam N, Gauthier ML, O'Day DH. Post-mortem changes in calmodulin binding proteins in muscle and lung. Forensic Sci Int. 2003;131(2-3):140-7. doi: 10.1016/s0379-0738(02)00426-7.
- 50. Poloz YO, O'Day DH. Determining time of death: temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal Med. 2009;123(4):305-14. doi: 10.1007/s00414-009-0343-x
- 51. Pittner S, Monticelli FC, Pfisterer A, et al. Postmortem degradation of skeletal muscle proteins: a novel approach to determine the time since death. Int J Legal Med. 2016;130(2):421-31. doi: 10.1007/s00414-015-1210-6.
- 52. Pittner S, Ehrenfellner B, Zissler A, et al. First application of a protein-based approach for time since death estimation. Int J Legal Med. 2017;131(2):479-483. doi: 10.1007/s00414-016-1459-4.
- 53. Foditsch EE, Saenger AM, Monticelli FC. Skeletal muscle proteins: a new approach to delimitate the time since death. Int J Legal Med. 2016;130(2):433-40. doi: 10.1007/s00414-015-1204-4.
- 54. Zissler A, Stoiber W, Steinbacher P, et al. Postmortem Protein Degradation as a Tool to Estimate the PMI: A Systematic Review. Diagnostics (Basel). 2020;10(12):1014. doi: 10.3390/diagnostics10121014.
- 55. Battistini A, Capitanio D, Bailo P, et al. Proteomic analysis by mass spectrometry of postmortem muscle protein degradation for PMI estimation: A pilot study. Forensic Sci Int. 2023;349:111774. doi: 10.1016/j.forsciint.2023.111774.
- 56. Choi KM, Zissler A, Kim E, et al. Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int J Legal Med. 2019;133(3):899-908. doi: 10.1007/s00414-019-02011-6.
- 57. Procopio N, Williams A, Chamberlain AT, Buckley M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J Proteomics. 2018;177:21-30. doi: 10.1016/j.jprot.2018.01.016.
- 58. Abd Elazeem EA, Ismail MME, Zaghloul HS, et al. Estimation of postmortem interval in myocardial stab wounds and firearm injuries: An immunohistochemical comparative study using C5b-9 and cardiac Troponin C. Forensic Sci Int. 2021;324:110846. doi: 10.1016/j.forsciint.2021.110846.
- 59. Kumar S, Ali W, Singh US, et al. The effect of elapsed time on the cardiac Troponin-T (cTnT) proteolysis in case of death due to burn: A study to evaluate the potential forensic use of cTnT to determine the postmortem interval. Sci Justice. 2015;55(3):189-94. doi: 10.1016/j.scijus.2014.12.006.
- 60. Peyron PA, Hirtz C, Baccino E, et al. Tau protein in cerebrospinal fluid: a novel biomarker of the time of death? Int J Legal Med. 2021;135(5):2081-2089. doi: 10.1007/s00414-021-02558-3.
- 61. Campell ZK, Kwon I, Finley SJ, et al. Talin: A potential protein biomarker in postmortem investigations. J Forensic Leg Med. 2016;44:188-191. doi: 10.1016/j.jflm.2016.10.020.
- 62. Kim BJ, Han C, Moon H, et al. Monitoring of post-mortem changes of saliva N-glycosylation by nano LC/MS. Anal Bioanal Chem. 2018;410(1):45-56. doi: 10.1007/s00216-017-0702-2.
- 63. De-Giorgio F, Bergamin E, Baldi A, et al. Immunohistochemical expression of HMGB1 and related proteins in the skin as a possible tool for determining post-mortem interval: a preclinical study. Forensic Sci Med Pathol. 2024;20(1):149-165. doi: 10.1007/s12024-023-00634-1.
- 64. Mazzotti MC, Fais P, Palazzo C, et al. Determining the time of death by morphological and immunohistochemical evaluation of collagen fibers in postmortem gingival tissues. Leg Med (Tokyo). 2019;39:1-8. doi: 10.1016/j.legalmed.2019.05.002.
- 65. Nolan AN, Mead RJ, Maker G, et al. The impact of environmental factors on the production of peptides in mammalian decomposition fluid in relation to the estimation of post-mortem interval: A summer/winter comparison in Western Australia. Forensic Sci Int. 2019;303:109957. doi: 10.1016/j.forsciint.2019.109957.
- 66. Приходько А.Н., Лаврукова О.С., Лябзина С.Н., и др. Использование микробно-энтомологических данных для установления давности наступления смерти. Судебно-медицинская экспертиза. 2018;61(6):52‑56. [Prikhod’ko AN, Lavrukova OS, Lyabzina SN, et al. The use of the microbial and entomological data for the diagnostics of prescription of death coming. Forensic Medical Expertise. 2018;61(6):52‑56. (In Russ.)]
- doi: 10.17116/sudmed20186106152
- 67. Rueda LC, Ortega LG, Segura NA, et al. Lucilia sericata strain from Colombia: Experimental colonization, life tables and evaluation of two artificial diets of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogotá, Colombia strain. Biol Res. 2010;43(2):197-203.
- 68. Gebhart FT, Brogdon BG, Zech WD, et al. Gas at postmortem computed tomography--an evaluation of 73 non-putrefied trauma and non-trauma cases. Forensic Sci Int. 2012;222(1-3):162-9. doi: 10.1016/j.forsciint.2012.05.020.
- 69. Matuszewski S, Bajerlein D, Konwerski S, Szpila K. An initial study of insect succession and carrion decomposition in various forest habitats of Central Europe. Forensic Sci Int. 2008;180(2-3):61-9. doi: 10.1016/j.forsciint.2008.06.015.
- 70. Voss SC, Forbes SL, Dadour IR. Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci Med Pathol. 2008;4(1):22-32. doi: 10.1007/s12024-007-0028-z.
- 71. Niederegger S, Schermer J, Höfig J, Mall G. Case report: Time of death estimation of a buried body by modeling a decomposition matrix for a pig carcass. Leg Med (Tokyo). 2015;17(1):34-8. doi: 10.1016/j.legalmed.2014.08.007.
- 72. Sukontason KL, Narongchai P, Sukontason K, et al. Forensically important fly maggots in a floating corpse: the first case report in Thailand. J Med Assoc Thai. 2005;88(10):1458-61.
- 73. Wang M, Chu J, Wang Y, et al. Forensic entomology application in China: Four case reports. J Forensic Leg Med. 2019;63:40-47. doi: 10.1016/j.jflm.2019.03.001.
- 74. Matuszewski S, Mądra-Bielewicz A. Post-mortem interval estimation based on insect evidence in a quasi-indoor habitat. Sci Justice. 2019;59(1):109-115. doi: 10.1016/j.scijus.2018.06.004.
- 75. Hu G, Wang M, Wang Y, et al. Estimation of post-mortem interval based on insect species present on a corpse found in a suitcase. Forensic Sci Int. 2020;306:110046. doi: 10.1016/j.forsciint.2019.110046.
- 76. Worner SP. Evaluation of diurnal temperature models and thermal summation in New Zealand. J. Econ. Entomol. 1988; 8: 9-13.
- 77. Amendt J, Richards CS, Campobasso CP, et al. Forensic entomology: applications and limitations. Forensic Sci Med Pathol. 2011;7(4):379-92. doi: 10.1007/s12024-010-9209-2.
- 78. Amendt J, Richards CS, Campobasso CP, et al. Forensic entomology: applications and limitations. Forensic Sci Med Pathol. 2011;7(4):379-92. doi: 10.1007/s12024-010-9209-2.
- 79. Palavesam A, Selvakumar R, Latha BR, et al. Assessment of consistency of minimum post-mortem intervals estimated by thermal summation-based methods in medico-legal cases associated with blowflies. Leg Med (Tokyo). 2023;61:102210. doi: 10.1016/j.legalmed.2023.102210.
- 80. Zajac BK, Amendt J, Verhoff MA, Zehner R. Dating Pupae of the Blow Fly Calliphora vicina Robineau-Desvoidy 1830 (Diptera: Calliphoridae) for Post Mortem Interval-Estimation: Validation of Molecular Age Markers. Genes (Basel). 2018;9(3):153. doi: 10.3390/genes9030153.
- 81. Paula MC, Michelutti KB, Eulalio ADMM, et al. New method for estimating the post-mortem interval using the chemical composition of different generations of empty puparia: Indoor cases. PLoS One. 2018;13(12):e0209776. doi: 10.1371/journal.pone.0209776.
- 82. Baqué M, Amendt J. Strengthen forensic entomology in court--the need for data exploration and the validation of a generalised additive mixed model. Int J Legal Med. 2013;127(1):213-23. doi: 10.1007/s00414-012-0675-9.
- 83. Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol. 2020;9(2):14. doi: 10.1167/tvst.9.2.14.
- 84. Sharma R, Diksha, Bhute AR, Bastia BK. Application of artificial intelligence and machine learning technology for the prediction of postmortem interval: A systematic review of preclinical and clinical studies. Forensic Sci Int. 2022;340:111473. doi: 10.1016/j.forsciint.2022.111473.
- 85. Li J, Wu YJ, Liu MF, et al. Multi-omics integration strategy in the post-mortem interval of forensic science. Talanta. 2024;268(Pt 1):125249. doi: 10.1016/j.talanta.2023.125249.
- 86. Wang Z, Zhang F, Wang L, et al. Advances in artificial intelligence-based microbiome for PMI estimation. Front Microbiol. 2022;13:1034051. doi: 10.3389/fmicb.2022.1034051.
- 87. Speruda M, Piecuch A, Borzęcka J, et al. Microbial traces and their role in forensic science. J Appl Microbiol. 2022;132(4):2547-2557. doi: 10.1111/jam.15426.
- 88. Johnson HR, Trinidad DD, Guzman S, et al. A Machine Learning Approach for Using the Postmortem Skin Microbiome to Estimate the Postmortem Interval. PLoS One. 2016;11(12):e0167370. doi: 10.1371/journal.pone.0167370.
- 89. Zhang Y, Pechal JL, Schmidt CJ, et al. Machine learning performance in a microbial molecular autopsy context: A cross-sectional postmortem human population study. PLoS One. 2019;14(4):e0213829. doi: 10.1371/journal.pone.0213829.
- 90. Hu L, Xing Y, Jiang P, et al. Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm. Sci Justice. 2021;61(5):516-527. doi: 10.1016/j.scijus.2021.06.006.
- 91. Li N, Liang XR, Zhou SD, et al. Exploring postmortem succession of rat intestinal microbiome for PMI based on machine learning algorithms and potential use for humans. Forensic Sci Int Genet. 2023;66:102904. doi: 10.1016/j.fsigen.2023.102904.
- 92. Cui C, Song Y, Mao D, et al. Predicting the Postmortem Interval Based on Gravesoil Microbiome Data and a Random Forest Model. Microorganisms. 2022;11(1):56. doi: 10.3390/microorganisms11010056
- 93. Zhang J, Wang M, Qi X, et al. the postmortem interval of burial cadavers based on microbial community succession. Forensic Sci Int Genet. 2021 May;52:102488. doi: 10.1016/j.fsigen.2021.102488.
- 94. Cantürk İ, Özyılmaz L. A computational approach to estimate postmortem interval using opacity development of eye for human subjects. Comput Biol Med. 2018;98:93-99. doi: 10.1016/j.compbiomed.2018.04.023.
- 95. Wu Z, Guo Y, Hayakawa M, et al. Artificial intelligence-driven microbiome data analysis for estimation of postmortem interval and crime location. Front Microbiol. 2024;15:1334703. doi: 10.3389/fmicb.2024.1334703.
- 96. Woydt L, Bernhard M, Kirsten H, et al. Intra-individual alterations of serum markers routinely used in forensic pathology depending on increasing post-mortem interval. Sci Rep. 2018;8(1):12811. doi: 10.1038/s41598-018-31252-5.
- 97. Chighine A, Stocchero M, Ferino G, et al. Metabolomics investigation of post-mortem human pericardial fluid. Int J Legal Med. 2023;137(6):1875-1885. doi: 10.1007/s00414-023-03050-w.
- 98. Usumoto Y, Kudo K, Tsuji A, et al. The derivation of predictive equations to speculate the post-mortem interval using cases with over 20-mL pleural effusion: A preliminary study. J Forensic Leg Med. 2019;65:61-67. doi: 10.1016/j.jflm.2019.05.001.
- 99. De-Giorgio F, Ciasca G, Fecondo G, et al. Post mortem computed tomography meets radiomics: a case series on fractal analysis of post mortem changes in the brain. Int J Legal Med. 2022;136(3):719-727. doi: 10.1007/s00414-022-02801-5.
- 100. Wilk LS, Edelman GJ, Roos M, et al. Individualised and non-contact post-mortem interval determination of human bodies using visible and thermal 3D imaging. Nat Commun. 2021;12(1):5997. doi: 10.1038/s41467-021-26318-4.
- 101. Castro AL, Tarelho S, Dias M, et al. Comparison of endogenous GHB concentrations in blood and hair in death cases with emphasis on the post mortem interval. Int J Legal Med. 2016;130(4):959-965. doi: 10.1007/s00414-016-1321-8.
- 102. Mahajan N, Romalpreet SK, Sharma M, Kumar RS. Vitamin C as a Potential indicator of post-mortem interval: a biochemical analysis. Indian J. Forensic Med. Toxicol. 2019; 13: 35. doi: 10.5958/0973-9130.2019.00008.2
Дополнительные файлы



