Innovative Strategies for Estimating Postmortem Interval in Forensic Practice: Multi-Omics, Artificial Intelligence, and Combined Models



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Determining the time since death (postmortem interval, PMI) is one of the key challenges in forensic practice, as the accuracy of this estimation directly affects the reliability of expert conclusions and the efficiency of investigative procedures. Traditional methods based on morphological signs and thermometric measurements have limited accuracy, particularly at extended intervals. Recent research focuses on the development of innovative approaches, including molecular technologies, microbiome analysis, multi-omics strategies, and the integration of artificial intelligence for big data processing. This article provides an overview of the latest methods for estimating PMI, with particular attention to nucleic acids (DNA, RNA), proteomics, metabolomics, and microbiome profiling. The potential of immunohistochemical markers, mass spectrometry, and nuclear magnetic resonance for quantitative assessment of biochemical changes in tissues and biological fluids is discussed. Advances in forensic entomology are also highlighted, including the application of molecular and chemical techniques for validating insect developmental stages.
A separate section addresses the implementation of machine learning and deep learning algorithms to build predictive models based on multifactorial datasets, including microbiome profiles, imaging data, and environmental parameters. Examples of combined approaches integrating biomolecular markers with computational technologies are presented, demonstrating improved accuracy in PMI estimation during both early and advanced decomposition stages. The integration of traditional and innovative methods, the development of standardized protocols, and interdisciplinary collaboration open new opportunities for forensic medicine, forming a basis for creating reliable, reproducible, and universal algorithms for PMI assessment.

Full Text

Restricted Access

About the authors

Gulgena R. Mustafina

Email: gulgenarm@mail.ru
ORCID iD: 0000-0003-2534-6385
SPIN-code: 8904-2046

Kirill O. Kuznetsov

N.I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: kuznetsovarticles@mail.ru
ORCID iD: 0000-0002-2405-1801
SPIN-code: 3053-3773
Russian Federation

Svetlana A. Kosobutskaya

Email: fotinia78@mail.ru
ORCID iD: 0000-0002-5484-9574
SPIN-code: 2589-3752

Maksim A. Sokolovkiy

Email: maks_sokolovskiy@internet.ru
ORCID iD: 0009-0005-4998-3532

Alvina I. Semenova

Email: semyonowaalvina@yandex.ru
ORCID iD: 0009-0009-7823-9322

Valery N. Korotun

Email: korotun_vn@mail.ru
ORCID iD: 0000-0001-9654-3269

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81753 выдано 09.09.2021 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 – 59181 выдано 03.09.2014
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies