Online histostereometric analysis in forensic digital pathology



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

BACKGROUND: A necessary element of forensic digital pathology is the quantitative analysis of images of histological, histochemical and immunohistochemical preparations. However, the inaccessibility of commercial analysis packages limits the scaling of the principles of digital pathology and, accordingly, methods of objective histological diagnostics in domestic forensic medical examination. This article offers an accessible online application that performs automated histostereometric analysis of scanned images of histological and immunohistochemical preparations, as well as digital images of their individual fields of view.

AIM: development of an online histostereometric image analysis tool for forensic digital pathology.

MATERIAL AND METHODS: The design of the study is the development of an online application compatible with Windows, Linux, Android and iOS operating systems, designed to highlight micro-objects with specified color properties in digital images and histostereometric analysis. The application code was compiled in the JavaScript programming language using the open OpenCV library.

RESULTS: The online application "Color Histostereometry Calculator" has been developed, designed to determine the specific volume and number of micro-objects with specified color characteristics in digital images of histological and immunohistochemical preparations. Using the HSV color model, which adjusts the ranges and minimum sizes of the areas to be considered, as well as the principle of identifying microobjects by their color properties rather than geometry, make it possible to exclude various image artifacts from analysis, segment layered microobjects, and evaluate the desired morphometric parameters for an infinitely thin slice, thereby eliminating the effect of slice thickness on morphometry results.

CONCLUSIONS: The developed online application is recommended for use in forensic medical practice when determining the prescription of death by cranioencephalic thermometry of a corpse.

全文:

受限制的访问

作者简介

Vladimir Nedugiv

Samara National Research University (Samara University

Email: nedugovvg@gmail.com
ORCID iD: 0009-0007-7542-7235
SPIN 代码: 2407-7937
Scopus 作者 ID: 58092580600

student of the Institute of Informatics and Cybernetics

俄罗斯联邦, 34, Moskovskoye shosse, Samara, 443086, Russia

Anna Zhukova

Samara National Research University (Samara University)

Email: anna.zhuk.dreamer@yandex.ru
ORCID iD: 0009-0004-5237-7739

student of the Institute of Informatics and Cybernetics 

俄罗斯联邦, 34, Moskovskoye shosse, Samara, 443086, Russia

German Nedugov

Samara State Medical University

编辑信件的主要联系方式.
Email: nedugovh@mail.ru
ORCID iD: 0000-0002-7380-3766
SPIN 代码: 3828-8091

PhD, Associate professor, the Head of the Department of forensic medicine of Samara State Medical University

俄罗斯联邦, 89, Chapaevskaya st., Samara, Russia, 443099

参考

  1. Gutman DA, Khalilia M, Lee S, Nalisnik M, Mullen Z, Beezley J, Chittajallu DR, Manthey D, Cooper LAD. The Digital Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research. Cancer Res. 2017;77(21):e75-e78. doi: 10.1158/0008-5472.CAN-17-0629
  2. Pallua JD, Brunner A, Zelger B, Schirmer M, Haybaeck J. The future of pathology is digital. Pathol Res Pract. 2020;216(9):153040. doi: 10.1016/j.prp.2020.153040
  3. Jahn SW, Plass M, Moinfar F. Digital Pathology: Advantages, Limitations and Emerging Perspectives. J Clin Med. 2020;9(11):3697. doi: 10.3390/jcm9113697
  4. Hijazi A, Bifulco C, Baldin P, Galon J. Digital Pathology for Better Clinical Practice. Cancers (Basel). 2024;16(9):1686. doi: 10.3390/cancers16091686
  5. Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol. 2022;35(1):23-32. doi: 10.1038/s41379-021-00919-2
  6. Hassell LA, Absar SF, Chauhan C, Dintzis S, Farver CF, Fathima S, Glassy EF, Goldstein JA, Gullapalli R, Ho J, Koch LK, Madory JE, Mirza KM, Nguyen PN, Pantanowitz L, Parwani A, Rojansky R, Seifert RP, Singh R, ElGabry EA, Bui M. Pathology Education Powered by Virtual and Digital Transformation: Now and the Future. Arch Pathol Lab Med. 2023;147(4):474-491. doi: 10.5858/arpa.2021-0473-RA
  7. Kiran N, Sapna F, Kiran F, Kumar D, Raja F, Shiwlani S, Paladini A, Sonam F, Bendari A, Perkash RS, Anjali F, Varrassi G. Digital Pathology: Transforming Diagnosis in the Digital Age. Cureus. 2023;15(9):e44620. doi: 10.7759/cureus.44620
  8. Tizhoosh HR, Pantanowitz L. On image search in histopathology. J Pathol Inform. 2024;15:100375. doi: 10.1016/j.jpi.2024.100375
  9. Louis DN, Feldman M, Carter AB, Dighe AS, Pfeifer JD, Bry L, Almeida JS, Saltz J, Braun J, Tomaszewski JE, Gilbertson JR, Sinard JH, Gerber GK, Galli SJ, Golden JA, Becich MJ. Computational Pathology: A Path Ahead. Arch Pathol Lab Med. 2016;140(1):41-50. doi: 10.5858/arpa.2015-0093-SA
  10. Nam S, Chong Y, Jung CK, Kwak TY, Lee JY, Park J, Rho MJ, Go H. Introduction to digital pathology and computer-aided pathology. J Pathol Transl Med. 2020;54(2):125-134. doi: 10.4132/jptm.2019.12.31
  11. Hosseini MS, Bejnordi BE, Trinh VQ, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform. 2024;15:100357. doi: 10.1016/j.jpi.2023.100357
  12. Kobek M, Jankowski Z, Szala J, Gąszczyk-Ożarowski Z, Pałasz A, Skowronek R. Time-related morphometric studies of neurofilaments in brain contusions. Folia Neuropathol. 2016;54(1):50-8. doi: 10.5114/fn.2016.58915
  13. Zhou Y, Zhang J, Huang J, Deng K, Zhang J, Qin Z, Wang Z, Zhang X, Tuo Y, Chen L, Chen Y, Huang P. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm. Forensic Sci Int. 2019;302:109922. doi: 10.1016/j.forsciint.2019.109922
  14. Garland J, Hu M, Duffy M, Kesha K, Glenn C, Morrow P, Stables S, Ondruschka B, Da Broi U, Tse RD. Classifying Microscopic Acute and Old Myocardial Infarction Using Convolutional Neural Networks. Am J Forensic Med Pathol. 2021;42(3):230-234. doi: 10.1097/PAF.0000000000000672
  15. Li D, Zhang J, Guo W, Ma K, Qin Z, Zhang J, Chen L, Xiong L, Huang J, Wan C, Huang P. A diagnostic strategy for pulmonary fat embolism based on routine H&E staining using computational pathology. Int J Legal Med. 2024;138(3):849-858. doi: 10.1007/s00414-023-03136-5
  16. Volonnino G, De Paola L, Spadazzi F, Serri F, Ottaviani M, Zamponi MV, Arcangeli M, La Russa R. Artificial intelligence and future perspectives in Forensic Medicine: a systematic review. Clin Ter. 2024;175(3):193-202. doi: 10.7417/CT.2024.5062
  17. Bankhead P. Developing image analysis methods for digital pathology. J Pathol. 2022;257(4):391-402. doi: 10.1002/path.5921
  18. Stodden V, Seiler J, Ma Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc Natl Acad Sci U S A. 2018;115(11):2584-2589. doi: 10.1073/pnas.1708290115
  19. Cadwallader L, Papin JA, Mac Gabhann F, Kirk R. Collaborating with our community to increase code sharing. PLoS Comput Biol. 2021;17(3):e1008867. doi: 10.1371/journal.pcbi.1008867
  20. Couture JL, Blake RE, McDonald G, Ward CL. A funder-imposed data publication requirement seldom inspired data sharing. PLoS One. 2018;13(7):e0199789. doi: 10.1371/journal.pone.0199789
  21. Perkel JM. How to fix your scientific coding errors. Nature. 2022;602(7895):172-173. doi: 10.1038/d41586-022-00217-0
  22. Levet F, Carpenter AE, Eliceiri KW, Kreshuk A, Bankhead P, Haase R. Developing open-source software for bioimage analysis: opportunities and challenges. F1000Res. 2021;10:302. doi: 10.12688/f1000research.52531.1
  23. Nowogrodzki J. How to support open-source software and stay sane. Nature. 2019;571(7763):133-134. doi: 10.1038/d41586-019-02046-0
  24. Nedugov GV. Morphometric diagnostics of the age of encapsulated subdural hematomas. Forensic Medical Expertise. 2011;54(3):19-22. (In Russ).
  25. Nedugov GV. Estimation of postnatal life duration of the premature newborns by postnatal involution of hemopoietic tissue of the liver. Forensic Medical Expertise. 2005;48(5):9-12. (In Russ).
  26. Avtandilov GG. Osnovy kolichestvennoi patologicheskoi anatomii: Uchebnoe posobie. – Moskva: Meditsina, 2002.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81753 выдано 09.09.2021 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 – 59181 выдано 03.09.2014
г.



##common.cookie##