Online histostereometric analysis in digital forensic pathology: a technical report
- Authors: Nedugiv V.G.1, Zhukova A.V.2, Nedugov G.V.2
-
Affiliations:
- Samara State Medical University
- Samara National Research University (Samara University)
- Issue: Vol 11, No 2 (2025)
- Pages: 145-154
- Section: Technical reports
- Submitted: 05.02.2025
- Accepted: 09.06.2025
- Published: 27.08.2025
- URL: https://for-medex.ru/jour/article/view/16256
- DOI: https://doi.org/10.17816/fm16256
- EDN: https://elibrary.ru/XJRSVO
- ID: 16256
Cite item
Abstract
BACKGROUND: Quantitative image analysis of histological, histochemical, and immunohistochemical specimens is an essential component of digital forensic pathology. However, the scarcity of commercial analysis software limits the widespread implementation of digital pathology principles, and thus objective histological diagnosis, in forensic medical examinations in Russia. This article presents a readily accessible online application for automated histostereometric image analysis of histological and immunohistochemical specimens, as well as digital photographs of individual fields of view.
AIM: The work aimed to develop an online tool for histostereometric analysis of images used in digital forensic pathology.
METHODS: This work presents an online application compatible with Windows, Linux, Android, and iOS operating systems. The application is designed to detect microstructures with specific color characteristics in digital images and perform histostereometric analysis. The software code was written in JavaScript using the open-source library OpenCV.
RESULTS: An online application Color Histostereometry Calculator was developed to determine the relative volume and number of microstructures with specific color characteristics in raster images of histological and immunohistochemical specimens. The application uses the HSV (Hue, Saturation, Value) color model, with the ability to adjust the ranges of color parameters and the minimum size of the analyzed regions; moreover, it identifies microstructures based on their color characteristics rather than geometric features. This allows for the exclusion of various image artifacts from the analysis, the segmentation of overlapping structures, and the evaluation of morphometric parameters for an infinitesimally thin section, thereby eliminating the influence of section thickness on the analysis results.
CONCLUSION: The proposed online application is recommended for histostereometric analysis in digital forensic pathology.
Full Text

About the authors
Vladimir G. Nedugiv
Samara State Medical University
Author for correspondence.
Email: nedugovvg@gmail.com
ORCID iD: 0009-0007-7542-7235
SPIN-code: 2407-7937
Russian Federation, Samara
Anna V. Zhukova
Samara National Research University (Samara University)
Email: anna.zhuk.dreamer@yandex.ru
ORCID iD: 0009-0004-5237-7739
Russian Federation, Samara
German V. Nedugov
Samara National Research University (Samara University)
Email: nedugovh@mail.ru
ORCID iD: 0000-0002-7380-3766
SPIN-code: 3828-8091
MD, Dr. Sci. (Medicine), Assistant Professor
Russian Federation, SamaraReferences
- Zhang MZ, Meng YL, Ling HS, et al. Research Status and Prospects of Non-Traumatic Fat Embolism in Forensic Medicine. Fa Yi Xue Za Zhi. 2022;38(2):263–266. doi: 10.12116/j.issn.1004-5619.2020.401002
- Abouzahir H, Regragui M, Tolba CS, et al. Histopathological Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy: A Review of Three Autopsy Cases. The Malaysian Journal of Pathology. 2022;44(2):277–283. Available from: https://mjpath.org.my/2022/v44n2/arrhythmias.pdf
- Tan L, Byard RW. Cardiac Amyloid Deposition and the Forensic Autopsy - A Review and Analysis. Journal of Forensic and Legal Medicine. 2024;103:102663. doi: 10.1016/j.jflm.2024.102663 EDN: FPPMTV
- Ghamlouch A, De Simone S, Dimattia F, et al. Microscopic and Macroscopic Findings in Cocaine and Crack Airways Injuries: A Literature Review. La Clinica Terapeutica. 2025;176(2 suppl. 1):83–88. doi: 10.7417/CT.2025.5193
- Zhang DY, Venkat A, Khasawneh H, et al. Implementation of Digital Pathology and Artificial Intelligence in Routine Pathology Practice. Laboratory Investigation. 2024;104(9):102111. doi: 10.1016/j.labinv.2024.102111 EDN: CVTKOA
- Jariyapan P, Pora W, Kasamsumran N, Lekawanvijit S. Digital Pathology and Artificial Intelligence in Diagnostic Pathology. The Malaysian Journal of Pathology. 2025;47(1):3–12. Available from: https://www.mjpath.org.my/2025/v47n1/digital-pathology-and-AI.pdf
- Fabián O, Švajdler M, Jirásek T. Integration of Digital Pathology Workflow in the Anatomic Pathology Laboratory. Československá Patologie. 2025;61(1):22–28. Available from: https://pubmed.ncbi.nlm.nih.gov/40456622/
- Gutman DA, Khalilia M, Lee S, et al. The Digital Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research. Cancer Research. 2017;77(21):e75–e78. doi: 10.1158/0008-5472.CAN-17-0629
- Pallua JD, Brunner A, Zelger B, et al. The Future of Pathology is Digital. Pathology - Research and Practice. 2020;216(9):153040. doi: 10.1016/j.prp.2020.153040 EDN: WDORBN
- Jahn SW, Plass M, Moinfar F. Digital Pathology: Advantages, Limitations and Emerging Perspectives. Journal of Clinical Medicine. 2020;9(11):3697. doi: 10.3390/jcm9113697 EDN: UHOJAO
- Hijazi A, Bifulco C, Baldin P, Galon J. Digital Pathology for Better Clinical Practice. Cancers. 2024;16(9):1686. doi: 10.3390/cancers16091686 EDN: IHIAYP
- Baxi V, Edwards R, Montalto M, Saha S. Digital Pathology and Artificial Intelligence in Translational Medicine and Clinical Practice. Modern Pathology. 2022;35(1):23–32. doi: 10.1038/s41379-021-00919-2 EDN: HCPFJI
- Hassell LA, Absar SF, Chauhan C, et al. Pathology Education Powered by Virtual and Digital Transformation: Now and the Future. Archives of Pathology & Laboratory Medicine. 2022;147(4):474–491. doi: 10.5858/arpa.2021-0473-ra EDN: LIQBYN
- Kiran N, Sapna FNU, Kiran FNU, et al. Digital Pathology: Transforming Diagnosis in the Digital Age. Cureus. 2023;15(90):e44620. doi: 10.7759/cureus.44620 EDN: HGTEMP
- Tizhoosh HR, Pantanowitz L. On Image Search in Histopathology. Journal of Pathology Informatics. 2024;15:100375. doi: 10.1016/j.jpi.2024.100375 EDN: LHYVMG
- Louis DN, Feldman M, Carter AB, et al. Computational Pathology: A Path Ahead. Archives of Pathology & Laboratory Medicine. 2015;140(1):41–50. doi: 10.5858/arpa.2015-0093-SA
- Nam S, Chong Y, Jung CK, et al. Introduction to Digital Pathology and Computer-Aided Pathology. Journal of Pathology and Translational Medicine. 2020;54(2):125–134. doi: 10.4132/jptm.2019.12.31 EDN: LFTRDW
- Hosseini MS, Bejnordi BE, Trinh VQH, et al. Computational Pathology: A Survey Review and the Way Forward. Journal of Pathology Informatics. 2024;15:100357. doi: 10.1016/j.jpi.2023.100357 EDN: LVMRRM
- Kobek M, Jankowski Z, Szala J, et al. Time-Related Morphometric Studies of Neurofilaments in Brain Contusions. Folia Neuropathologica. 2016;1:50–58. doi: 10.5114/fn.2016.58915
- Zhou Y, Zhang J, Huang J, et al. Digital Whole-Slide Image Analysis for Automated Diatom Test in Forensic Cases of Drowning Using a Convolutional Neural Network Algorithm. Forensic Science International. 2019;302:109922. doi: 10.1016/j.forsciint.2019.109922
- Garland J, Hu M, Duffy M, et al. Classifying Microscopic Acute and Old Myocardial Infarction Using Convolutional Neural Networks. American Journal of Forensic Medicine & Pathology. 2021;42(3):230–234. doi: 10.1097/paf.0000000000000672 EDN: VCAELO
- Li D, Zhang J, Guo W, et al. A Diagnostic Strategy for Pulmonary Fat Embolism Based on Routine H&E Staining Using Computational Pathology. International Journal of Legal Medicine. 2023;138(3):849–858. doi: 10.1007/s00414-023-03136-5 EDN: AZHOBN
- Volonnino G, De Paola L, Spadazzi F, et al. Artificial Intelligence and Future Perspectives in Forensic Medicine: A Systematic Review. Clin Ter. 2024;175(3):193–202. doi: 10.7417/CT.2024.5062
- Bankhead P. Developing Image Analysis Methods for Digital Pathology. The Journal of Pathology. 2022;257(4):391–402. doi: 10.1002/path.5921 EDN: SWPEFT
- Stodden V, Seiler J, Ma Z. An Empirical Analysis of Journal Policy Effectiveness for Computational Reproducibility. Proceedings of the National Academy of Sciences. 2018;115(11):2584–2589. doi: 10.1073/pnas.1708290115
- Cadwallader L, Papin JA, Mac Gabhann F, Kirk R. Collaborating With Our Community to Increase Code Sharing. PLOS Computational Biology. 2021;17(3):e1008867. doi: 10.1371/journal.pcbi.1008867 EDN: PZRYDC
- Couture JL, Blake RE, McDonald G, Ward CL. A Funder-Imposed Data Publication Requirement Seldom Inspired Data Sharing. PLOS ONE. 2018;13(7):e0199789. doi: 10.1371/journal.pone.0199789
- Perkel JM. How to Fix Your Scientific Coding Errors. Nature. 2022;602(7895):172–173. doi: 10.1038/d41586-022-00217-0 EDN: AQEQYM
- Levet F, Carpenter AE, Eliceiri KW, et al. Developing Open-Source Software for Bioimage Analysis: Opportunities and Challenges. F1000Research. 2021;10:302. doi: 10.12688/f1000research.52531.1 EDN: VTEMIZ
- Nowogrodzki J. How to Support Open-Source Software and Stay Sane. Nature. 2019;571(7763):133–134. doi: 10.1038/d41586-019-02046-0
- Nedugov GV. Morphometric Diagnostics of the Age Of Encapsulated Subdural Hematomas. Forensic Medical Expertise. 2011;54(3):19–22. EDN: PXKDWV
- Avtandilov GG. Fundamentals of Quantitative Pathological Anatomy: A Tutorial. Moscow: Meditsina; 2002. (In Russ.) ISBN: 5-225-04151-5 Available from: https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_330460/?ysclid=mdhec2t2c326584559
- Nedugov GV. Determination of the Duration of Extrauterine Life of Premature Infants by the Severity of Postnatal Involution of the Hematopoietic Tissue of the Liver. Forensic Medical Expertise. 2005;48(5):9–12. (In Russ.)
Supplementary files
