尸检阴性心源性猝死的组织形态学和遗传学诊断前景
- 作者: Kulbitskiy B.N.1, Vladykina O.A.2, Bogomolov D.V.1, Kadykova A.I.3, Deev R.V.1,3
-
隶属关系:
- Petrovsky National Research Centre of Surgery
- North-Western State Medical University named after I.I. Mechnikov
- Federal Research and Clinical Center of Sports Medicine and Rehabilitation
- 期: 卷 10, 编号 4 (2024)
- 页面: 589-601
- 栏目: 科学评论
- ##submission.dateSubmitted##: 23.10.2024
- ##submission.dateAccepted##: 11.12.2024
- ##submission.datePublished##: 05.12.2024
- URL: https://for-medex.ru/jour/article/view/16192
- DOI: https://doi.org/10.17816/fm16192
- ID: 16192
如何引用文章
详细
本文介绍了在尸检未发现明显病理变化的情况下,对心源性猝死进行组织学和遗传学诊断的前景。
近年来,尸检阴性病例,包括心源性猝死的数量有所增加,这为开发更精确的死亡原因诊断方法和未来类似情况的预防提供了可能性。本文探讨了现代心脏组织学研究方法以及分子遗传学测试的应用,这些方法在识别导致心源性猝死的亚临床状态中可能具有重要作用。
目前,分子遗传学方法在心源性猝死研究中的应用仍处于初步阶段,在俄罗斯关于类似死亡病例分子遗传学原因的大规模研究仍然不足,这凸显了医学遗传学、病理解剖学和法医学交叉领域发展的潜力。
本文简要回顾了心源性猝死病例的组织学和遗传学诊断研究成果,提出了将这些方法整合到诊断过程中的方法,以便在病理解剖和法医学实践中高效应用。作者强调了进一步研究的必要性,包括采用最新的组织学和遗传学分析技术,以及通过大数据分析发现新的心源性猝死病理机制。
医学遗传学咨询可用于评估心源性猝死的遗传易感性,从而识别高危人群并降低死亡率。在未来,可能会发现心源性猝死的遗传预测因子与心肌收缩蛋白表达缺陷之间的联系,并通过免疫组织化学分析进一步确认这些缺陷。
全文:

作者简介
Boris N. Kulbitskiy
Petrovsky National Research Centre of Surgery
Email: kulbitskiybn@rambler.ru
ORCID iD: 0000-0001-7791-3041
SPIN 代码: 7785-0838
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowOlga A. Vladykina
North-Western State Medical University named after I.I. Mechnikov
Email: olavtryggvason@yandex.ru
ORCID iD: 0009-0001-4136-8691
俄罗斯联邦, Saint Petersburg
Dmitry V. Bogomolov
Petrovsky National Research Centre of Surgery
Email: usicc@yandex.ru
ORCID iD: 0000-0002-9111-8623
SPIN 代码: 2777-2674
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowAnastasya I. Kadykova
Federal Research and Clinical Center of Sports Medicine and Rehabilitation
Email: KadykovaAI@sportfmba.ru
ORCID iD: 0000-0003-2996-6194
SPIN 代码: 8764-6577
俄罗斯联邦, Moscow
Roman V. Deev
Petrovsky National Research Centre of Surgery; Federal Research and Clinical Center of Sports Medicine and Rehabilitation
编辑信件的主要联系方式.
Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN 代码: 2957-1687
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, Moscow; Moscow参考
- Shlyakhto EV, Arutyunov GP, Belenkov YN, et al. National recommendations on the determination of risk and prevention of sudden cardiac death. 2nd ed. Moscow: Medpraktika-M; 2018. 247 р. (In Russ.) EDN: OGIVYR
- Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death ― executive summary: A report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Eur Heart J. 2006;27(17):2099–2140. doi: 10.1093/eurheartj/ehl199
- Priori SG, Blomstrom-Lundqvist C. 2015 European Society of Cardiology Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur Heart J. 2015;36(41):2757–2759. doi: 10.1093/eurheartj/ehv445
- Bayes de Luna A, Elosua R. Sudden death (In English, Spanish). Rev Esp Cardiol (Engl Ed). 2012;65(11):1039–1052. doi: 10.1016/j.recesp.2012.03.032
- Zimmerman DS, Tan HL. Epidemiology and risk factors of sudden cardiac arrest. Curr Opin Crit Care. 2021;27(6):613–616. doi: 10.1097/MCC.0000000000000896
- Stiles MK, Wilde AA, Abrams DJ, et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm. 2021;18(1):e1–e50. doi: 10.1016/j.hrthm.2020.10.010
- Lou J, Chen H, Huang S, et al. Update on risk factors and biomarkers of sudden unexplained cardiac death. J Forensic Leg Med. 2022;87:102332. doi: 10.1016/j.jflm.2022.102332
- Fitzgerald DA, Jeffery H, Arbuckle S, et al. Sudden Unexpected Death in Infancy [SUDI]: What the clinician, pathologist, coroner and researchers want to know. Paediatr Respir Rev. 2022;41:14–20. doi: 10.1016/j.prrv.2021.08.002
- Grassi S, Vidal MC, Campuzano O, et al. Sudden death without a clear cause after comprehensive investigation: An example of forensic approach to atypical/uncertain findings. Diagnostics (Basel). 2021;11(5):886. doi: 10.3390/diagnostics11050886
- Revishvili ASh, Neminushchiy NM, Batalov RE, et al. All-Russian clinical recommendations on the control of the risk of sudden cardiac arrest and sudden cardiac death, prevention and first aid. J Arrhythmology. 2017;(89):2–104. (In Russ.) EDN: YPIPVV
- Shankar R, Donner EJ, McLean B, et al. Sudden unexpected death in epilepsy (SUDEP): What every neurologist should know. Epileptic Disord. 2017;19(1):1–9. doi: 10.1684/epd.2017.0891
- Sahly AN, Shevell M, Sadleir LG, Myers KA. SUDEP risk and autonomic dysfunction in genetic epilepsies. Auton Neurosci. 2022;237:102907. doi: 10.1016/j.autneu.2021.102907
- Van der Werf C, Hendrix A, Birnie E, et al. Improving usual care after sudden death in the young with focus on inherited cardiac diseases (the CAREFUL study): A community-based intervention study. Europace. 2016;18(4):592–601. doi: 10.1093/europace/euv059
- Gavrilova EA, Churganov OA, Belodedova MD. Autopsy-negative cardiac death in sports and its causes. Human Physiology. 2021;47(2):232–236. EDN: HMHOCI doi: 10.31857/S0131164621010045
- Sheppard MN. Aetiology of sudden cardiac death in sport: A histopathologist's perspective. Br J Sports Med. 2012;46(Suppl 1):i15–i21. doi: 10.1136/bjsports-2012-091415
- Marijon E, Uy-Evanado A, Reinier K, et al. Sudden cardiac arrest during sports activity in middle age. Circulation. 2015;131(16):1384–1391. doi: 10.1161/CIRCULATIONAHA.114.011988
- Harmon KG, Asif IM, Maleszewski JJ, et al. Incidence, cause, and comparative frequency of sudden cardiac death in national collegiate athletic association athletes: A decade in review. Circulation. 2015;132(1):10–19. doi: 10.1161/CIRCULATIONAHA.115.015431
- Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of sudden death in sports: Insights from a United Kingdom regional registry. J Am Coll Cardiol. 2016;67(18):2108–2115. doi: 10.1016/j.jacc.2016.02.062
- Emery MS, Kovacs RJ. Sudden cardiac death in athletes. JACC Heart Fail. 2018;6(1):30–40. doi: 10.1016/j.jchf.2017.07.014
- Pigolkin YuI, Shilova MA, Berezovsky DP, et al. Molecular and genetic basis of sudden cardiac death of young-aged individuals with cardiomyopathy of different genesis. Forensic Medical Examination. 2019;62(3):48–53. EDN: HSDZOZ doi: 10.17116/sudmed20196203148
- Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med. 1992;326(4):242–250. doi: 10.1056/NEJM199201233260406
- Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618–e651. doi: 10.1161/CIR.0000000000000617
- Kumar V, Abbas AK, Aster JC. Robbins and Cotran pathologic basis of disease [June 2, 2014]. 9th ed. Elsevier Health Sciences; 2014. 1472 р.
- Braunwald E. Cardiomyopathies: An overview. Circ Res. 2017;121(7):711–721. doi: 10.1161/CIRCRESAHA.117.311812
- Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–1575. doi: 10.1056/NEJM199412083312307
- Bozkurt B, Colvin M, Cook J, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: A scientific statement from the American heart association. Circulation. 2016;134(23):e579–e646. doi: 10.1161/CIR.0000000000000455
- Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242–255. doi: 10.1016/S0140-6736(12)60397-3
- Seidman JG, Seidman C. The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–567. doi: 10.1016/s0092-8674(01)00242-2
- Olivotto I, Girolami F, Ackerman MJ, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83(6):630–638. doi: 10.4065/83.6.630
- Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: A position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29(2):270–276. doi: 10.1093/eurheartj/ehm342
- Maron BJ, Ommen SR, Semsarian C, et al. Hypertrophic cardiomyopathy: Present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol. 2014;64(1):83–99. doi: 10.1016/j.jacc.2014.05.003
- Chandra A, Skali H, Claggett B, et al. Race- and gender-based differences in cardiac structure and function and risk of heart failure. J Am Coll Cardiol. 2022;79(4):355–368. doi: 10.1016/j.jacc.2021.11.024
- Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy. Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2011;58(25):2703–2738. doi: 10.1016/j.jacc.2011.10.825
- Nihoyannopoulos P, Dawson D. Restrictive cardiomyopathies. Eur J Echocardiogr. 2009;10(8):iii23–33. doi: 10.1093/ejechocard/jep156
- Domínguez F, Adler E, García-Pavía P. Alcoholic cardiomyopathy: An updat. Eur Heart J. 2024;45(26):2294–2305. doi: 10.1093/eurheartj/ehae362
- Fernández-Solà J. The effects of ethanol on the heart: Alcoholic cardiomyopathy. Nutrients. 2020;12(2):572. doi: 10.3390/nu12020572
- Urbano-Marquez A, Estruch R, Navarro-Lopez F, et al. The effects of alcoholism on skeletal and cardiac muscle. N Engl J Med. 1989;320(7):409–415. doi: 10.1056/NEJM198902163200701
- Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376(1):61–72. doi: 10.1056/NEJMra1509267
- Fairweather D, Rose NR. Inflammatory heart disease: A role for cytokines. Lupus. 2005;14(9):646–651. doi: 10.1191/0961203305lu2192oa
- Duraes AR, de Souza Lima Bitar Y, Roever L, Neto MG. Endomyocardial fibrosis: Past, present, and future. Heart Fail Rev. 2020;25(5):725–730. doi: 10.1007/s10741-019-09848-4
- Sun R, Liu M, Lu L, et al. Congenital heart disease: Causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 2015;72(3):857–860. doi: 10.1007/s12013-015-0551-6
- Campuzano O, Sarquella-Brugada G, Fernandez-Falgueras A, et al. Reanalysis and reclassification of rare genetic variants associated with inherited arrhythmogenic syndromes. EBioMedicine. 2020;54:102732. doi: 10.1016/j.ebiom.2020.102732
- Mitchell RN, Ashar FN, Jarvelin MR, et al. Effect of sex and underlying disease on the genetic association of QT interval and sudden cardiac death. J Am Heart Assoc. 2019;8(23):e013751. doi: 10.1161/JAHA.119.013751
- Huang J, Wang X, Hao B, et al. Genetic variants in KCNE1, KCNQ1, and NOS1AP in sudden unexplained death during daily activities in Chinese Han population. J Forensic Sci. 2015;60(2):351–356 [published correction appears in J Forensic Sci. 2018 Jan;63(1):349. doi: 10.1111/1556-4029.13725]. doi: 10.1111/1556-4029.12687
- Liu Z, Liu X, Yu H, et al. Common variants in TRDN and CALM1 are associated with risk of sudden cardiac death in chronic heart failure patients in Chinese Han population. PLoS One. 2015;10(7):e0132459. doi: 10.1371/journal.pone.0132459
- Wang S, Zhang Z, Yang Y, et al. An insertion/deletion polymorphism within 3'UTR of RYR2 modulates sudden unexplained death risk in Chinese populations. Forensic Sci Int. 2017;270:165–172. doi: 10.1016/j.forsciint.2016.12.005
- Albert CM, MacRae CA, Chasman DI, et al. Common variants in cardiac Ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol. 2010;3(3):222–229. doi: 10.1161/CIRCEP.110.944934
- Son MK, Ki CS, Park SJ, et al. Genetic mutation in Korean patients of sudden cardiac arrest as a surrogating marker of idiopathic ventricular arrhythmia. J Korean Med Sci. 2013;28(7):1021–1026. doi: 10.3346/jkms.2013.28.7.1021
- Wieneke H, Svendsen JH, Lande J, et al. Polymorphisms in the GNAS gene as predictors of ventricular tachyarrhythmias and sudden cardiac death: Results from the DISCOVERY trial and oregon sudden unexpected death study. J Am Heart Assoc. 2016;5(12):e003905. doi: 10.1161/JAHA.116.003905
- Reinier K, Stecker EC, Uy-Evanado A, et al. Sudden cardiac death as first manifestation of heart disease in women: The oregon sudden unexpected death study, 2004–2016. Circulation. 2020;141(7):606–608. doi: 10.1161/CIRCULATIONAHA.119.044169
- Adler A, Novelli V, Amin AS, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020;141(6):418–428. doi: 10.1161/CIRCULATIONAHA.119.043132
- Ivanova AA, Maksimov VN. Molecular genetic aspects of sudden cardiac death: A review of the literature. Bulletin of Siberian Medicine. 2018;17(4):209–220. EDN: VQWTRY doi: 10.20538/1682-0363-2018-4-209-220
- Narula N, Tester DJ, Paulmichl A, et al. Post-mortem Whole exome sequencing with gene-specific analysis for autopsy-negative sudden unexplained death in the young: A case series. Pediatr Cardiol. 2015;36(4):768–778. doi: 10.1007/s00246-014-1082-4
- Maksimov VN, Ivanova AA, Orlov PS, et al. Association study of new polymorphisms with sudden cardiac death in men. Russian Journal of Cardiology. 2018;23(10):70–75. EDN: VPZPCI doi: 10.15829/1560-4071-2018-10-70-75
- Ivanova AA, Maksimov VN, Moiseeva DI, et al. Single nucleotide variants RS6582147, RS10010305, RS2136810, RS17797829 as new molecular genetic markers of sudden cardiac death. Russian Journal of Cardiology. 2018;23(10):64–69. EDN: VPZPCB doi: 10.15829/1560-4071-2018-10-64-69
补充文件
