人工智能系统在证实鉴定错误中的应用:科学综述

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

文章重点介绍了应用人工智能系统分析和纠正法医鉴定错误的潜力和困难。文章的重要性在于,对法医学鉴定评估准确性的不断提高的严格要求,以及最大限度地减少可能导致错误裁定失误的必要性。机器学习、神经网络和深度学习算法等技术的发展为提高鉴定活动的质量提供了新的可能。

在科学综述的框架下,进行了SWOT分析,旨在评估在法医鉴定实践中使用人工智能的优、劣势,以及潜在的前景和风险。分析表明,人工智能技术的主要优势在于高准确性、稳定性、快速性,且可以识别数据中复杂的形态。然而,也有相当大的限制,例如需要优质的训练数据集、财务成本,以及人工智能解决方案的解读能力问题。已发现的风险涉及道德问题、信息安全和法律障碍。

本综述分析使用人工智能识别和纠正法医错误的现有方法,重点强调了能够改进损伤机制诊断、确定死亡原因和识别鉴定意见中不一致的先进方法。本文给出了人工智能技术在法医实践中实际应用的例子,并介绍了它们进一步整合的前景。分析结果表明,人工智能在提高法医鉴定的准确性和可靠性方面具有巨大潜力。

全文:

受限制的访问

作者简介

Aigerim K. Bakenova

Academy of Public Administration under the President of the Republic of Kazakhstan

编辑信件的主要联系方式.
Email: alesina93@gmail.com
ORCID iD: 0009-0007-7813-9175
SPIN 代码: 7972-1858
哈萨克斯坦, 33а Abay ave, Astana, 010000

Yernar N. Begaliyev

Academy of Law Enforcement Agencies under the General Prosecutors Office of the Republic of Kazakhstan

Email: ernar-begaliev@mail.ru
ORCID iD: 0000-0001-6659-8576
SPIN 代码: 1929-3392

Dr. Sci. (Legal), Professor

哈萨克斯坦, Koshy

Anna A. Aubakirova

St. Petersburg University of Humanities and Social Sciences

Email: anna_lir@mail.ru
ORCID iD: 0000-0002-6547-0869
SPIN 代码: 3074-7383

Dr. Sci. (Legal), Professor

俄罗斯联邦, Saint Petersburg

Dmitry V. Bakhteev

Ural State Law University named after V.F. Yakovlev

Email: dmitry.bakhteev@gmail.com
ORCID iD: 0000-0002-0869-601X
SPIN 代码: 8301-7165

Dr. Sci. (Legal), Associate Professor

俄罗斯联邦, Ekaterinburg

Larissa K. Kussainova

Karaganda University named on E.A. Buketov

Email: klarisa_777@mail.ru
ORCID iD: 0000-0002-8208-6623
SPIN 代码: 5926-1900
Scopus 作者 ID: 57964019600
Researcher ID: rid66058

Cand. Sci. (Legal), Associate Professor

哈萨克斯坦, Karaganda

参考

  1. Pigolkin YuI, Dubrovin IA. Forensic medicine. Moscow: GEOTAR-Media; 2023.
  2. Russell S, Norvig P. Artificial intelligence: a modern approach. 4th ed. London: Pearson; 2020.
  3. Shortliffe EH, Buchanan BG. A model of inexact reasoning in medicine. Mathematical Biosciences. 1975;23(3-4):351–379. doi: 10.1016/0025-5564(75)90047-4
  4. DiMaio D, DiMaio VJM. Forensic pathology. 2rd ed. Boca Raton: CRC Press; 2001.
  5. Saukko P, Knight B. Knight's forensic pathology. 4th ed. London: CRC Press; 2015.
  6. Davis JH. Mistakes and failures in forensic pathology. Academic Forensic Pathology. 2011;1(4):382–385. doi: 10.23907/2011.054
  7. Guareschi E. Postmortem imaging in forensic cases. In: Guareschi E. Forensic pathology case studies. Cambridge: Acdemic Press; 2021. P. 79–93. doi: 10.1016/B978-0-12-824294-0.00003-0
  8. Lin H, Luo Y, Sun Q, et al. Determination of causes of death via spectrochemical analysis of forensic autopsies-based pulmonary edema fluid samples with deep learning algorithm. Journal of Biophotonics. 2020;13(4):e201960144. doi: 10.1002/jbio.201960144 EDN: KPZHMI
  9. Zeng Y, Zhang X, Yoshizumi I, et al. Deep learning-based diagnosis of fatal hypothermia using post-mortem computed tomography. The Tohoku Journal of Experimental Medicine. 2023;260(3):253–261. doi: 10.1620/tjem.2023.j041 EDN: BDDMIQ
  10. Schweitzer W, Thali M. Fatal obstructive asphyxia: trans-pulmonary density gradient characteristic as relevant identifier in postmortem CT. Journal of Forensic Radiology and Imaging. 2019;19:100337. doi: 10.1016/j.jofri.2019.100337
  11. Dempsey N, Bassed R, Blau S. The issues and complexities of establishing methodologies to differentiate between vertical and horizontal impact mechanisms in the analysis of skeletal trauma: an introductory femoral test. Forensic Science International. 2021;323:110785. doi: 10.1016/j.forsciint.2021.110785 EDN: VFRTMS
  12. Garland J, Ondruschka B, Stables S, et al. Identifying fatal head injuries on postmortem computed tomography using convolutional neural network/deep learning: a feasibility study. Journal of Forensic Sciences. 2020;65(6):2019–2022. doi: 10.1111/1556-4029.14502 EDN: MEAYGJ
  13. Demir S, Key S, Tuncer T, Dogan S. An exemplar pyramid feature extraction based humerus fracture classification method. Medical Hypotheses. 2020;140:109663. doi: 10.1016/j.mehy.2020.109663 EDN: ACUCQF
  14. Tortora L, Meynen G, Bijlsma J, et al. Neuroprediction and A.I. in forensic psychiatry and criminal justice: a neurolaw perspective. Frontiers in Psychology. 2020;11:220. doi: 10.3389/fpsyg.2020.00220 EDN: ZUJRFC
  15. Cockerill RG. Ethics implications of the use of artificial intelligence in violence risk assessment. The Journal of the American Academy of Psychiatry and the Law. 2020;48(3):345–349. doi: 10.29158/JAAPL.003940-20
  16. Lefèvre T, Tournois L. Artificial intelligence and diagnostics in medicine and forensic science. Diagnostics (Basel). 2023;13(23):3554. doi: 10.3390/diagnostics13233554
  17. Tournois L, Lefèvre T. AI in forensic medicine for the practicing doctor. In: Lidströmer N, Ashrafian H, editors. Artificial intelligence in medicine. Cham: Springer; 2022. P. 1777–1787. doi: 10.1007/978-3-030-64573-1_221
  18. Géron A. Hands-on machine learning with scikit-learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. Sebastopol: O’Reilly Media; 2017.
  19. Bonaccorsi A, Apreda R, Fantoni G. Expert biases in technology foresight. Why they are a problem and how to mitigate them. Technological Forecasting and Social Change. 2020;151:119855. doi: 10.1016/j.techfore.2019.119855 EDN: YQNVWL
  20. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.
  21. Wrigley S. Taming artificial intelligence: «Bots», the GDPR and regulatory approaches. In: Corrales M, Fenwick M, Forgó N, editors. Robotics, AI and the future of law. Singapore: Springer; 2018. P. 183–208. doi: 10.1007/978-981-13-2874-9_8
  22. Chesnokova EV, Usov AI, Omel’yanyuk GG, Nikulina MV. Artificial intelligence in forensic expertology. Theory and Practice of Forensic Science. 2023;18(3):60–77. doi: 10.30764/1819-2785-2023-3-60-77 EDN: KJZQOY
  23. Rossinskaya ER, Galyashina EI, Zinin AM. Theory of forensic expertise (forenswer science). Moscow: Legal publishing house "Norma"; 2016. (In Russ.) EDN: XQOMTF
  24. Klimova YaA. Artificial intelligence as a tool for digital forensics. In: Proceedings of the international scientific and practical conference «Artificial intelligence and big data in the judicial and law enforcement system: realities and the demand of the time». Astana, 2023 May 19. Koschi: Academy of Law Enforcement Agencies under the Prosecutor General's Office of the Republic of Kazakhstan; 2023. P. 241–245. (In Russ.) EDN: AMULEA
  25. Yarmak KV. The modern trends in the development of complex expertise. Vestnik of Moscow University of the Ministry of Internal Affairs of Russia. 2014;(6):7–12. EDN: SJDERN
  26. Aubakirova AA. Intellectual errors of an expert when forming his internal conviction. Moscow: Yurlitinform; 2012. (In Russ.) EDN: QSNBSD
  27. Edzhubov LG. Reliability and validity of the conclusions of the forensic expert. In: Smirnova SA, editor. Encyclopedic dictionary of forensic science theory: multimodal edition «Foresound expertise: reboot». Moscow: Russian Federal Center for Forensic Science under the Ministry of Justice of the Russian Federation; 2012. P. 100–101. (In Russ.) EDN: EYMAMC
  28. Schneider J, Breitinger F. Towards AI forensics: did the artificial intelligence system do it?. Journal of Information Security and Applications. 2023;76:103517. doi: 10.1016/j.jisa.2023.103517 EDN: YRAVWT
  29. Kokin AV, Denisov YuD. Artificial intelligence in criminalistics and forensic examination: issues of legal personality and algorithmic bias. Theory and Practice of Forensic Science. 2023;18(2):30–37. doi: 10.30764/1819-2785-2023-2-30-37 EDN: DNMRLF
  30. Tsvetkov YuA. Artificial intelligence in justice. Statute. 2021;(4):91–107. EDN: KOKTBD
  31. Hartung T. ToxAIcology – the evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX. 2023;40(4):559–570. doi: 10.14573/altex.2309191 EDN: NHRWAZ
  32. Chonbayev YeG, Begaliyev YeN, Kuanaliyeva GA, et al. Criminalistic aspects of torture using an artificial intelligence system: a review. Russian Journal of Forensic Medicine. 2024;10(1):37–46. doi: 10.17816/fm16102 EDN: AJSBEZ
  33. Voyevodkin DV, Rustemova GR, Begaliyev YeN, et al. Identifying fake conclusions of forensic medical examinations using an artificial intelligence technology based on the experience in the Republic of Kazakhstan: a review. Russian Journal of Forensic Medicine. 2023;9(3):287–298. doi: 10.17816/fm8270 EDN: EFNJIE
  34. Sadykov MB, Begaliyev YeN, Bakhteev DV, et al. Use of artificial intelligence and human chipping in forensic medicine: a review. Russian Journal of Forensic Medicine. 2023;10(1):88–98. doi: 10.17816/fm16093 EDN: LXZIJZ
  35. Zhantureyev ZZ, Begaliyev YeN, Aubakirova AA, Bertleuov SS. Use of an underwater drone during the study of drowned bodies: a review. Russian Journal of Forensic Medicine. 2024;10(1):68–78. doi: 10.17816/fm16097 EDN: PMIXUI
  36. Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. Journal of Digital Imaging. 2017;30(4):427–441. doi: 10.1007/s10278-017-9955-8 EDN: VOOUOO
  37. Meissner G. Artificial intelligence: consciousness and conscience. AI & Society. 2019;35(1):225–235. doi: 10.1007/s00146-019-00880-4 EDN: FAVXZB
  38. Gubaidullina EKh, Gavrilov IA. Artificial intelligence in China civil proceedings. In: Collection of materials of the VIII International scientific and practical conference “Contemporary strategies and digital transformations of sustainable development of society, education and science”. Moscow, 2023 Apr 7. Moscow: Limited Liability Company "ALEF Publishing House"; 2023. P. 59–63. (In Russ.) doi: 10.34755/IROK.2023.26.55.070 EDN: RKWEME
  39. Sharma R. 36 exploring the ethical implications of AI in legal decision-making. Indian Journal of Law. 2023;1(1):42–50. doi: 10.36676/ijl.2023-v1i1-06
  40. Orakbayev AB, Kurmangali ZhK, Begaliyev YeN, et al. On the issue of using the results of a virtual autopsy in criminal investigation: a review. Russian Journal of Forensic Medicine. 2023;9(2):183–192. doi: 10.17816/fm774 EDN: OEERGD
  41. Jadhav EB, Sankhla MS, Kumar R. Artificial Intelligence: advancing automation in forensic science and criminal investigation. Seybold Report. 2020:15(8):2064–2075.
  42. Schneider PM, Prainsack B, Kayser M. The use of forensic DNA Phenotyping in predicting appearance and biogeographic ancestry. Dtsch Arztebl Int. 2019;116(51-52):873–880. doi: 10.3238/arztebl.2019.0873

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81753 выдано 09.09.2021 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 – 59181 выдано 03.09.2014
г.



##common.cookie##