Artificial intelligence for the detection of forensic practitioner errors: a review
- Authors: Bakenova A.K.1, Begaliyev Y.N.2, Aubakirova A.A.3, Bakhteev D.V.4, Kussainova L.K.5
-
Affiliations:
- Academy of Public Administration under the President of the Republic of Kazakhstan
- Academy of Law Enforcement Agencies under the General Prosecutors Office of the Republic of Kazakhstan
- St. Petersburg University of Humanities and Social Sciences
- Ural State Law University named after V.F. Yakovlev
- Karaganda University named on E.A. Buketov
- Issue: Vol 11, No 1 (2025)
- Pages: 76-87
- Section: Reviews
- Submitted: 08.08.2024
- Accepted: 15.01.2025
- Published: 03.04.2025
- URL: https://for-medex.ru/jour/article/view/16176
- DOI: https://doi.org/10.17816/fm16176
- ID: 16176
Cite item
Abstract
The article discusses the opportunities and challenges associated with the use of artificial intelligence analyze and mitigate forensic practitioner errors. The significance of the study is justified by the increasing demands on the accuracy of expert opinions in forensic medicine and the need to minimize errors that can result in erroneous legal judgments. The advancements in technologies such as machine learning, neural networks, and deep learning algorithms are opening up new opportunities to improve the quality of expert work.
A review incorporated a SWOT analysis to assess the advantages and disadvantages of artificial intelligence in forensic practice, along with potential opportunities and risks. The analysis demonstrated that the major advantages of artificial intelligence technologies are associated with high accuracy, stability, response time, and the ability to identify complex data patterns. However, the analysis also identified significant limitations, including the need for high-quality training datasets, significant financial costs, and problems related to the interpretability of artificial intelligence solutions. The identified risks include ethical aspects, information security, and legal limitations.
This review focuses on the analysis of current artificial intelligence solutions for the detection and correction of forensic errors, with particular attention paid to innovative methods that can improve the diagnosis of the mechanism of injury, the identification of the cause of death, and the recognition of inconsistent expert opinions. The article discusses real-life examples of using artificial intelligence technologies in forensic practice, and the prospects for their further integration. The analysis demonstrates the significant potential of artificial intelligence to improve the accuracy and reliability of forensic examinations.
Full Text

About the authors
Aigerim K. Bakenova
Academy of Public Administration under the President of the Republic of Kazakhstan
Author for correspondence.
Email: alesina93@gmail.com
ORCID iD: 0009-0007-7813-9175
SPIN-code: 7972-1858
Казахстан, 33а Abay ave, Astana, 010000
Yernar N. Begaliyev
Academy of Law Enforcement Agencies under the General Prosecutors Office of the Republic of Kazakhstan
Email: ernar-begaliev@mail.ru
ORCID iD: 0000-0001-6659-8576
SPIN-code: 1929-3392
Dr. Sci. (Legal), Professor
Казахстан, KoshyAnna A. Aubakirova
St. Petersburg University of Humanities and Social Sciences
Email: anna_lir@mail.ru
ORCID iD: 0000-0002-6547-0869
SPIN-code: 3074-7383
Dr. Sci. (Legal), Professor
Россия, Saint PetersburgDmitry V. Bakhteev
Ural State Law University named after V.F. Yakovlev
Email: dmitry.bakhteev@gmail.com
ORCID iD: 0000-0002-0869-601X
SPIN-code: 8301-7165
Dr. Sci. (Legal), Associate Professor
Россия, EkaterinburgLarissa K. Kussainova
Karaganda University named on E.A. Buketov
Email: klarisa_777@mail.ru
ORCID iD: 0000-0002-8208-6623
SPIN-code: 5926-1900
Scopus Author ID: 57964019600
ResearcherId: rid66058
Cand. Sci. (Legal), Associate Professor
Казахстан, KaragandaReferences
- Pigolkin YuI, Dubrovin IA. Forensic medicine. Moscow: GEOTAR-Media; 2023.
- Russell S, Norvig P. Artificial intelligence: a modern approach. 4th ed. London: Pearson; 2020.
- Shortliffe EH, Buchanan BG. A model of inexact reasoning in medicine. Mathematical Biosciences. 1975;23(3-4):351–379. doi: 10.1016/0025-5564(75)90047-4
- DiMaio D, DiMaio VJM. Forensic pathology. 2rd ed. Boca Raton: CRC Press; 2001.
- Saukko P, Knight B. Knight's forensic pathology. 4th ed. London: CRC Press; 2015.
- Davis JH. Mistakes and failures in forensic pathology. Academic Forensic Pathology. 2011;1(4):382–385. doi: 10.23907/2011.054
- Guareschi E. Postmortem imaging in forensic cases. In: Guareschi E. Forensic pathology case studies. Cambridge: Acdemic Press; 2021. P. 79–93. doi: 10.1016/B978-0-12-824294-0.00003-0
- Lin H, Luo Y, Sun Q, et al. Determination of causes of death via spectrochemical analysis of forensic autopsies-based pulmonary edema fluid samples with deep learning algorithm. Journal of Biophotonics. 2020;13(4):e201960144. doi: 10.1002/jbio.201960144 EDN: KPZHMI
- Zeng Y, Zhang X, Yoshizumi I, et al. Deep learning-based diagnosis of fatal hypothermia using post-mortem computed tomography. The Tohoku Journal of Experimental Medicine. 2023;260(3):253–261. doi: 10.1620/tjem.2023.j041 EDN: BDDMIQ
- Schweitzer W, Thali M. Fatal obstructive asphyxia: trans-pulmonary density gradient characteristic as relevant identifier in postmortem CT. Journal of Forensic Radiology and Imaging. 2019;19:100337. doi: 10.1016/j.jofri.2019.100337
- Dempsey N, Bassed R, Blau S. The issues and complexities of establishing methodologies to differentiate between vertical and horizontal impact mechanisms in the analysis of skeletal trauma: an introductory femoral test. Forensic Science International. 2021;323:110785. doi: 10.1016/j.forsciint.2021.110785 EDN: VFRTMS
- Garland J, Ondruschka B, Stables S, et al. Identifying fatal head injuries on postmortem computed tomography using convolutional neural network/deep learning: a feasibility study. Journal of Forensic Sciences. 2020;65(6):2019–2022. doi: 10.1111/1556-4029.14502 EDN: MEAYGJ
- Demir S, Key S, Tuncer T, Dogan S. An exemplar pyramid feature extraction based humerus fracture classification method. Medical Hypotheses. 2020;140:109663. doi: 10.1016/j.mehy.2020.109663 EDN: ACUCQF
- Tortora L, Meynen G, Bijlsma J, et al. Neuroprediction and A.I. in forensic psychiatry and criminal justice: a neurolaw perspective. Frontiers in Psychology. 2020;11:220. doi: 10.3389/fpsyg.2020.00220 EDN: ZUJRFC
- Cockerill RG. Ethics implications of the use of artificial intelligence in violence risk assessment. The Journal of the American Academy of Psychiatry and the Law. 2020;48(3):345–349. doi: 10.29158/JAAPL.003940-20
- Lefèvre T, Tournois L. Artificial intelligence and diagnostics in medicine and forensic science. Diagnostics (Basel). 2023;13(23):3554. doi: 10.3390/diagnostics13233554
- Tournois L, Lefèvre T. AI in forensic medicine for the practicing doctor. In: Lidströmer N, Ashrafian H, editors. Artificial intelligence in medicine. Cham: Springer; 2022. P. 1777–1787. doi: 10.1007/978-3-030-64573-1_221
- Géron A. Hands-on machine learning with scikit-learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. Sebastopol: O’Reilly Media; 2017.
- Bonaccorsi A, Apreda R, Fantoni G. Expert biases in technology foresight. Why they are a problem and how to mitigate them. Technological Forecasting and Social Change. 2020;151:119855. doi: 10.1016/j.techfore.2019.119855 EDN: YQNVWL
- Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.
- Wrigley S. Taming artificial intelligence: «Bots», the GDPR and regulatory approaches. In: Corrales M, Fenwick M, Forgó N, editors. Robotics, AI and the future of law. Singapore: Springer; 2018. P. 183–208. doi: 10.1007/978-981-13-2874-9_8
- Chesnokova EV, Usov AI, Omel’yanyuk GG, Nikulina MV. Artificial intelligence in forensic expertology. Theory and Practice of Forensic Science. 2023;18(3):60–77. doi: 10.30764/1819-2785-2023-3-60-77 EDN: KJZQOY
- Rossinskaya ER, Galyashina EI, Zinin AM. Theory of forensic expertise (forenswer science). Moscow: Legal publishing house "Norma"; 2016. (In Russ.) EDN: XQOMTF
- Klimova YaA. Artificial intelligence as a tool for digital forensics. In: Proceedings of the international scientific and practical conference «Artificial intelligence and big data in the judicial and law enforcement system: realities and the demand of the time». Astana, 2023 May 19. Koschi: Academy of Law Enforcement Agencies under the Prosecutor General's Office of the Republic of Kazakhstan; 2023. P. 241–245. (In Russ.) EDN: AMULEA
- Yarmak KV. The modern trends in the development of complex expertise. Vestnik of Moscow University of the Ministry of Internal Affairs of Russia. 2014;(6):7–12. EDN: SJDERN
- Aubakirova AA. Intellectual errors of an expert when forming his internal conviction. Moscow: Yurlitinform; 2012. (In Russ.) EDN: QSNBSD
- Edzhubov LG. Reliability and validity of the conclusions of the forensic expert. In: Smirnova SA, editor. Encyclopedic dictionary of forensic science theory: multimodal edition «Foresound expertise: reboot». Moscow: Russian Federal Center for Forensic Science under the Ministry of Justice of the Russian Federation; 2012. P. 100–101. (In Russ.) EDN: EYMAMC
- Schneider J, Breitinger F. Towards AI forensics: did the artificial intelligence system do it?. Journal of Information Security and Applications. 2023;76:103517. doi: 10.1016/j.jisa.2023.103517 EDN: YRAVWT
- Kokin AV, Denisov YuD. Artificial intelligence in criminalistics and forensic examination: issues of legal personality and algorithmic bias. Theory and Practice of Forensic Science. 2023;18(2):30–37. doi: 10.30764/1819-2785-2023-2-30-37 EDN: DNMRLF
- Tsvetkov YuA. Artificial intelligence in justice. Statute. 2021;(4):91–107. EDN: KOKTBD
- Hartung T. ToxAIcology – the evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX. 2023;40(4):559–570. doi: 10.14573/altex.2309191 EDN: NHRWAZ
- Chonbayev YeG, Begaliyev YeN, Kuanaliyeva GA, et al. Criminalistic aspects of torture using an artificial intelligence system: a review. Russian Journal of Forensic Medicine. 2024;10(1):37–46. doi: 10.17816/fm16102 EDN: AJSBEZ
- Voyevodkin DV, Rustemova GR, Begaliyev YeN, et al. Identifying fake conclusions of forensic medical examinations using an artificial intelligence technology based on the experience in the Republic of Kazakhstan: a review. Russian Journal of Forensic Medicine. 2023;9(3):287–298. doi: 10.17816/fm8270 EDN: EFNJIE
- Sadykov MB, Begaliyev YeN, Bakhteev DV, et al. Use of artificial intelligence and human chipping in forensic medicine: a review. Russian Journal of Forensic Medicine. 2023;10(1):88–98. doi: 10.17816/fm16093 EDN: LXZIJZ
- Zhantureyev ZZ, Begaliyev YeN, Aubakirova AA, Bertleuov SS. Use of an underwater drone during the study of drowned bodies: a review. Russian Journal of Forensic Medicine. 2024;10(1):68–78. doi: 10.17816/fm16097 EDN: PMIXUI
- Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. Journal of Digital Imaging. 2017;30(4):427–441. doi: 10.1007/s10278-017-9955-8 EDN: VOOUOO
- Meissner G. Artificial intelligence: consciousness and conscience. AI & Society. 2019;35(1):225–235. doi: 10.1007/s00146-019-00880-4 EDN: FAVXZB
- Gubaidullina EKh, Gavrilov IA. Artificial intelligence in China civil proceedings. In: Collection of materials of the VIII International scientific and practical conference “Contemporary strategies and digital transformations of sustainable development of society, education and science”. Moscow, 2023 Apr 7. Moscow: Limited Liability Company "ALEF Publishing House"; 2023. P. 59–63. (In Russ.) doi: 10.34755/IROK.2023.26.55.070 EDN: RKWEME
- Sharma R. 36 exploring the ethical implications of AI in legal decision-making. Indian Journal of Law. 2023;1(1):42–50. doi: 10.36676/ijl.2023-v1i1-06
- Orakbayev AB, Kurmangali ZhK, Begaliyev YeN, et al. On the issue of using the results of a virtual autopsy in criminal investigation: a review. Russian Journal of Forensic Medicine. 2023;9(2):183–192. doi: 10.17816/fm774 EDN: OEERGD
- Jadhav EB, Sankhla MS, Kumar R. Artificial Intelligence: advancing automation in forensic science and criminal investigation. Seybold Report. 2020:15(8):2064–2075.
- Schneider PM, Prainsack B, Kayser M. The use of forensic DNA Phenotyping in predicting appearance and biogeographic ancestry. Dtsch Arztebl Int. 2019;116(51-52):873–880. doi: 10.3238/arztebl.2019.0873
Supplementary files
