法医学磁共振成像评估膝关节年龄:系统文献综述

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

背景。年龄评估在现代社会不仅是一个重要且紧迫的问题,还具有重要的社会意义。根据官方统计数据,2021年移民和难民人数创下新高,分别超过 8900 万人和 2710 万人。其中大部分是 18 岁以下的儿童和青少年。由于缺乏正式的法律文件,他们无法证明自己的出生日期。因此,在这种情况下,需要进行法医学鉴定以确定年龄。磁共振成像(Magnetic Resonance Imaging, MRI)因其安全性和高效性,被认为是评估年龄的首选方法。因此,有必要研究其作为记录和评估目标解剖部位生长发育情况的方法的可行性。

研究目的。分析已发表的关于使用磁共振成像结果评估膝关节骨骺骨化阶段的可能性,以实现对儿童、青少年和年轻人法医学年龄评估的文献数据。

材料与方法。本研究的方案已在 PROSPERO 系统综述前瞻性注册库中注册(注册号 CRD42022344779,2022 年)。为确保对现有知识的全面综述,使用了 PubMed、Web of Science 和 Scopus 等多个数据库。我们检索了 1985 年至 2021 年间发表的英文文章,采用的关键词包括 “age estimation”、“age determination”、“knee”、“magnetic resonance imaging of the knee”。

结果。共筛选并详细分析了 13 篇文献。研究显示,不同文章在磁共振成像研究方案、骨骺骨化阶段的分类标准、研究者的专业领域及其经验方面存在显著差异。样本群体存在明显的异质性,包括研究对象数量的差异、年龄范围的多样性以及各年龄组内的分布不均。

结论。被纳入系统综述的研究所提供的信息量及其异质性,无法进行作者结果的荟萃分析,也无法预测目标年龄组分类错误的风险。因此,目前使用膝关节磁共振成像结果来评估骨骼年龄尚不能作为客观的证据基础。

全文:

受限制的访问

作者简介

Dmitry D. Zolotenkov

Sechenov First Moscow State Medical University (Sechenov University)

编辑信件的主要联系方式.
Email: Zolotenkovaspir@mail.ru
ORCID iD: 0000-0002-1224-1077
SPIN 代码: 1352-8848
俄罗斯联邦, Moscow

Natalia S. Serova

Sechenov First Moscow State Medical University (Sechenov University)

Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0003-2975-4431
SPIN 代码: 4632-3235

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Moscow

Galina V. Zolotenkova

Sechenov First Moscow State Medical University (Sechenov University)

Email: zolotenkova_g_v@staff.sechenov.ru
ORCID iD: 0000-0003-1764-2213

MD, Dr. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Moscow

Maria P. Poletaeva

Sechenov First Moscow State Medical University (Sechenov University)

Email: poletaeva_m_p@staff.sechenov.ru
ORCID iD: 0000-0003-0542-100X
SPIN 代码: 4910-8281

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Yuri I. Pigolkin

Sechenov First Moscow State Medical University (Sechenov University)

Email: pigolkin@mail.ru
ORCID iD: 0000-0001-5370-4931
SPIN 代码: 1426-5903

MD, Dr. Sci. (Medicine), Proffessor, Corresponding Member of the Russian Academy of Sciences

俄罗斯联邦, Moscow

参考

  1. Data and statistics: global trends; [about 3 screens]. In: The Office of the United Nations High Commissioner for Refugees (UNHCR) [Internet]. Geneva: The Agency; 2001–2024 [cited 2024 Dec 16]. Available from: https://unhcr.org/globaltrends
  2. European Asylum Support Office. Practical guide on age assessment, second edition: EASO Practical Guides Series. Malta, 2018. 112 p. doi: 10.2847/23618732
  3. NowotnyT, Eisenberg W, Mohnike K. Unbegleitete minderjährige Flüchtlinge: Strittiges Alter – strittige Altersdiagnostik. Dtsch Arztebl. 2014;111(18):A786–A788.
  4. Glybochko PV, Pigolkin YuI, Nikolenko VN, et al. Sudebno-meditsinskaya diagnostika vozrasta. Moscow: Izdatel’stvo PMGMU im. I.M. Sechenova, 2016. (In Russ.) EDN: VNOIML
  5. Schmeling A, Grundmann C, Fuhrmann A, et al Criteria for age estimation in living individuals. Int J Legal Med. 2008;122(6):457–460. EDN: CXUSSD doi: 10.1007/s00414-008-0254-2
  6. Schmeling A, Dettmeyer R, Rudolf E, et al. Forensic age estimation: methods, certainty, and the law. Deutsches. Arzteblatt International. 2016;113(4):44–50. doi: 10.3238/arztebl.2016.0044
  7. Ritz-Timme S, Kaatsch HJ, Marré B, et al. Empfehlungen für die Altersdiagnostik bei Lebenden im Rentenverfahren. Rechtsmedizin. 2002;12(4):193–194. EDN: BDXRVJ doi: 10.1007/s00194-002-0159-1
  8. Scendoni R, Zolotenkova GV, Vanin S, et al. Forensic validity of the third molar maturity index (I3M) for age estimation in Russian population. BioMed research international. 2020;2020(1):1–6. EDN: PABEZP doi: 10.1155/2020/6670590
  9. Angelakopoulos N, De Luca S, Oliveira-Santos I, et al. Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample. Int J Legal Med. 2023;137(2):403–425. EDN: AIKIRQ doi: 10.1007/s00414-022-02930-x
  10. Wittschieber D, Schulz R, Vieth V, et al. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med. 2014;128(1):183–191. EDN: RIWXGQ doi: 10.1007/s00414-013-0932-6
  11. Cameriere R, De Luca S, De Angelis D, et.al. Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med. 2012;126(6):923–932. EDN: FJQDTY doi: 10.1007/s00414-012-0769-4
  12. Lopatin O, Barszcz M, Bolechala F, Wozniak KJ. The fusion of ossification centers – a comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Legal Medicine (Tokyo). 2013;61:102185. EDN: CDBDCZ doi: 10.1016/j.legalmed.2022.102185
  13. Dhamo B, Kragt L, Grgic O, et al. Ancestry and dental development: a geographic and genetic perspective. Am J. Phys Anthropol. 2018;165(2):299–308. doi: 10.1002/ajpa.23351
  14. Cameriere R, Ferrante L, De Angelis D, et al. The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18-year-olds in living subjects. Int J Legal Med. 2008;122(6):493–497. EDN: WYRTSS doi: 10.1007/s00414-008-0279-6
  15. Cameriere R, Bestetti F, Velandia Palacio LA, et al. Carpals and epiphyses of radius and ulna as age indicators using longitudinal data: a Bayesian approach. Int J Legal Med. 2019;133(1):197–204. EDN: MMNRJC doi: 10.1007/s00414-018-1807-7
  16. Quispe Lizarbe RJ, Solís Adrianzén C, Quezada-Márquez MM, et al. Demirjian’s stages and Cameriere’s third molar maturity index to estimate legal adult age in Peruvian population. Leg Med (Tokyo). 2017;25:59–65. doi: 10.1016/j.legalmed.2017.01.003
  17. Angelakopoulos N, Galić I, Balla SB, et.al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: a multi-ethnic study sample. Int J Legal Med. 2020;135(6):2423–2436. EDN: WOKKPG doi: 10.1007/s00414-021-02656-2
  18. Scharte P, Vieth V, Schulz R, et.al. Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med. 2017;131(5):1391–1397. EDN: YBAXCI doi: 10.1007/s00414-017-1615-5
  19. Tozakidou M, Apine I, Petersen KU, et.al. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation. Int J Legal Med. 2020;134(1):355–361. doi: 10.1007/s00414-019-02214-x
  20. Tozakidou M, Meister RL, Well L, et.al. CT of the medial clavicular epiphysis for forensic age estimation: hands up? Int J Legal Med. 2021;135(4):1581–1587. EDN: CBRWZW doi: 10.1007/s00414-021-02516-z
  21. Schmeling A. Forensic age diagnostics of living persons in criminal proceedings [dissertation]. Berlin: Universitätsmedizin Berlin; 2004.
  22. Baumann U, Schulz R, Reisinger W, et al. Reference study on the time frame for ossification of the distal radius and ulnar epiphyses on the hand radiograph. Forensic Sci Int. 2009;191(1–3):15–18. doi: 10.1016/j.forsciint.2009.05.023
  23. Schmidt S, Baumann U, Schulz R, et al. Study of age dependence of epiphyseal ossification of the hand skeleton. Int J Legal Med. 2008;122(1):51–54. EDN: KCODLI doi: 10.1007/s00414-007-0209-z
  24. Hisham S, Flavel A, Abdullah N, et al. Quantification of sphenooccipital synchondrosis fusion in a contemporary Malaysian population. Forensic Sci Int. 2018;284:78–84. doi: 10.1016/j.forsciint.2017.12.046
  25. Demirturk Kocasarac H, Sinanoglu A, Noujeim M, et al. Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study. Int J Legal Med. 2016;130(3):799–808. EDN: LCNODR doi: 10.1007/s00414-015-1298-8
  26. Sinanoglu A, Kocasarac HD, Noujeim M. Age estimation by an analysis of spheno-occipital synchondrosis using cone-beam computed tomography. Leg Med (Tokyo). 2016;18:13–19. doi: 10.1016/j.legalmed.2015.11.004
  27. Soliman KEA, Al Shehri F, AlThaqufi OJ. Age estimation of epiphyseal union around wrist joint and its correlation with chronological age: a radiological study in Qassim population, Saudi Arabia. Australian Journal of Forensic Sciences. 2022;55(1):605–620. EDN: IFHEAU doi: 10.1080/00450618.2022.2043437
  28. Sobh ZK, Mohamed AS. A computed tomographic analysis of spheno-occipital synchondrosis ossification for age estimation in a sample of Egyptians. Am J Forensic Med Pathol. 2021;42(3):235–242. EDN: UTNJLD doi: 10.1097/PAF.0000000000000645
  29. Candan B, Akın SD, Dilek EG, Didem K. Analysis of fusion of sphenooccipital synchondrosis using computed tomography in Turkish population. Australian Journal of Forensic Sciences. 2022;54(6):65–74. doi: 10.1080/00450618.2022.2123112
  30. Bayrak S, Göller Bulut D. Relationship between condyle cortication, sphenooccipital synchondrosis, and chronological age. Oral Radiol. 2020;36(2):190–196. EDN: BHEEXY doi: 10.1007/s11282-019-00398-x
  31. Fan F, Dong X, Wu X, et al. An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs. Forensic Sci Int. 2020;314:110350. EDN: BBEAVX doi: 10.1016/j.forsciint.2020.110350
  32. Ekizoglu O, Inci E, Erdil I, et al. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals. Int J Legal Med. 2016;130(4):1101–1107. EDN: SIXHOQ doi: 10.1007/s00414-016-1345-0
  33. Tang X, Lu Y, Pang M, et al. An abbreviated scale for the assessment of skeletal bone age using radiographs of the knee. Orthopedics. 2018;41(5):e676-e680. doi: 10.3928/01477447-20180724-03
  34. Welson NN, Abd El Basset AS. Age and sex estimation by knee roentgenographic assessment: An Egyptian population study. Journal of Forensic Radiology and Imaging. 2019;18:4–10. doi: 10.1016/j.jofri.2019.07.002
  35. Pröve PL, Jopp-van Well E, Stanczus B, et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med. 2019;133(4):1191–1205. EDN: PXCYFD doi: 10.1007/s00414-018-1953-y
  36. Ottow C, Schulz R, Pfeiffer H, et al. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol. 2017;27(12):5041–5048. EDN: CZSWJZ doi: 10.1007/s00330-017-4880-2
  37. O’Connor JE, Coyle J, Bogue C, et al. Age prediction formulae from radiographic assessment of skeletal maturation at the knee in an Irish population. Forensic Sci Int. 2014;234:188.e1–188.e8. doi: 10.1016/j.forsciint.2013.10.032
  38. O’Connor JE, Bogue C, Spence LD, Last J. A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study. J Anatomy. 2008;212(2):198–209. doi: 10.1111/j.1469-7580.2007.00847.x
  39. O’Connor JE, Coyle J, Spence LD, Last J. Epiphyseal maturity indicators at the knee and their relationship to chronological age: results of an Irish population study. Clin Anat. 2013;26(6):755–767. doi: 10.1002/ca.22122
  40. Mauer MA, Well EJ, Herrmann J, et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med. 2021;135(2):649–663. EDN: XWYSLD doi: 10.1007/s00414-020-02465-z
  41. Maggio A. The skeletal age estimation potential of the knee: current scholarship and future directions for research. Journal of Forensic Radiology and Imaging. 2017;9:13–15. doi: 10.1016/j.jofri.2017.05.002
  42. Kvist OF, Dallora AL, Nilsson O, et al. Comparison of reliability of magnetic resonance imaging using cartilage and T1-weighted sequences in the assessment of the closure of the growth plates at the knee. Acta Radiologica Open. 2020;9(9):205846012096273. doi: 10.1177/2058460120962732
  43. Krämer JA, Schmidt S, Jürgens KU, et al. The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol. 2014;10(3):306–313. EDN: MNZHSJ doi: 10.1007/s12024-014-9559-2
  44. Herrmann J, Säring D, Auf der Mauer M, et al. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI. Eur Radiol. 2021;31(5):3237–3247. EDN: SMLIFB doi: 10.1007/s00330-020-07343-1
  45. Hackman L, Black S. Age estimation from radiographic images of the knee. J Forensic Sci. 2013;58(3):732–737. doi: 10.1111/1556-4029.12077
  46. Gurses MS., Altinsoy HB. Evaluation of distal femoral epiphysis and proximal tibial epiphysis ossification using the Vieth method in living individuals: applicability in the estimation of forensic age. Australian Journal of Forensic Sciences. 2020;53(4):431–447. doi: 10.1080/00450618.2020.1743357
  47. Galić I, Mihanović F, Giuliodori A, et al. Accuracy of scoring of the epiphyses at the knee joint (SKJ) for assessing legal adult age of 18 years. Int J Legal Med. 2016;130(4):1129–1142. EDN: ILSUNB doi: 10.1007/s00414-016-1348-x
  48. Fan F, Zhang K, Peng Z, et al. Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Science International. 2016;268:145–150. doi: 10.1016/j.forsciint.2016.10.002
  49. Faisant M, Rerolle C, Faber C, et al. Is the persistence of an epiphyseal scar of the knee a reliable marker of biological age? Int J Legal Med. 2015;129(3):603–608. doi: 10.1007/s00414-014-1130-x
  50. El-Din EAA, Mostafa HES, Tantawy EF, El-Shafei DA. Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? Forensic Sci Med Pathol. 2019;15(3):352–361. EDN: YMZWYF doi: 10.1007/s12024-019-00116-3
  51. Ekizoglu O, Er A, Bozdag M, et al. Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence. Int J Legal Med. 2020;135(6):1–7. EDN: DURUZB doi: 10.1007/s00414-020-02402-0
  52. Dedouit F, Auriol J, Rousseau H, et al. Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Science International. 2012;217(1-3):232.e1–232.e7. doi: 10.1016/j.forsciint.2011.11.013
  53. Dallora AL, Berglund JS, Brogren M. et al. Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR Med Inform. 2019;7(4):e16291. doi: 10.2196/16291
  54. Dallora AL, Anderberg P, Kvist O, et al. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS One. 2019;14(7):e0220242. doi: 10.1371/journal.pone.0220242
  55. Daghighi MH, Pourisa M, Javanpour-Heravi H, et al. Application of knee MRI in forensic age estimation: a retrospective cohort. Radiography (Lond). 2021;27(1):108–114. EDN: KZPOHH doi: 10.1016/j.radi.2020.06.019
  56. Chowdhuri S, Das S, Ghosh R. Estimation of Forensic Age from Bony Fusion of Distal Femoral and Proximal Tibial Epiphyses by MRI of the Knee. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics. 2020;9(2):185–194. EDN: UOJWYL doi: 10.17063/bjfs9(2)y2020185
  57. Cameriere R, Cingolani M, Giuliodori A, et al. Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med. 2012;126(6):889–899. EDN: LGHBBQ doi: 10.1007/s00414-012-0754-y
  58. Boeyer ME, Ousley SD. Skeletal assessment and secular changes in knee development: a radiographic approach. Am J Phys Anthropol. 2017;162(2):229–240. doi: 10.1002/ajpa.23110
  59. Mauer M, Säring D, Stanczus B, et al. A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med. 2019;133(1):205–215. EDN: PKZYZS doi: 10.1007/s00414-018-1826-4
  60. Altinsoy HB, Alatas O, Gurses MS, Turkmen Inanir N. Forensic age estimation in living individuals by 1.5T magnetic resonance imaging of the knee: a retrospective MRI study. Australian Journal of Forensic Sciences. 2020;52(4):439–453. doi: 10.1080/00450618.2018.1545868
  61. Alatas O, Altınsoy HB, Gurses MS, Balci A. Evaluation of knee ossification on 1.5 T magnetic resonance images using the method of Vieth et al.: a retrospective magnetic resonance imaging study. Rechtsmedizin. 2021;31(1):50–58. EDN: LGFDPO doi: 10.1007/s00194-020-00432-x
  62. Uygun B, Kaya K, Köse S, et al. Applicability of magnetic resonance imaging of the knee in forensic age estimation. Am J Forensic Med Pathol. 2021;42(2):147–154. doi: 10.1097/PAF.0000000000000634
  63. Vieth V, Schulz R, Heindel W. et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol. 2018;28(8):3255–3262. EDN: DGCWBR doi: 10.1007/s00330-017-5281-2
  64. Ekizoglu O, Hocaoglu E, Inci E, et al. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique. Forensic Science International. 2016;260:102.e1–102.e7. doi: 10.1016/j.forsciint.2015.12.006
  65. Dogaroiu C, Avramoiu M. Correlation between chronological age and the stage of union of the distal femur and proximal tibia epiphyses in a Romanian sample population. Rom J Leg Med. 2015;23:171–176. doi: 10.4323/rjlm.2015.171
  66. Aly SM, Shrestha B, Hong DJ, et al. Identification of age and sex based on knee radiography. Forensic Science International. 2016;267:231.e1–231.e7. doi: 10.1016/j.forsciint.2016.08.001
  67. Margalit A, Cottrill E, Nhan D, et al. The spatial order of physeal maturation in the normal human knee using magnetic resonance imaging. J Pediatr Orthop. 2019;39(4):e318–e322. doi: 10.1097/BPO.0000000000001298
  68. Krämer JA, Schmidt S, Jürgens KU, et al. Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med. 2014;128(3):509–514. EDN: FCBINB doi: 10.1007/s00414-014-0967-3
  69. Kellinghaus M, Schulz R, Vieth V, et al. Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med. 2010;124(4):321–325. EDN: DHXACF doi: 10.1007/s00414-010-0448-2
  70. Schmeling A, Schulz R, Reisinger W, et al. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med. 2004;118(1):5–8. doi: 10.1007/s00414-003-0404-5
  71. De Tobel J, Bauwens J, Parmentier GIL, et al. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol. 2020;50(12):1691–1708. EDN: LQFRDT doi: 10.1007/s00247-020-04709-x
  72. Boldsen JL, Milner GR, Konigsberg LW, Wood JW. Transition analysis: a new method for estimating age from skeletons. In: Hoppa R.D., Vaupel J.W., (eds). Paleodemography: age distributions from skeletal samples. Cambridge University Press: Cambridge, 2002:73–106.
  73. Zolotenkova GV, Rogachev AI, Pigolkin YuI, et al. Age сlassification in forensic medicine using machine learning techniques. Sovremennye tehnologii v medicine. 2022;14(1):15–24. EDN: WRMKYT doi: 10.17691/stm2022.14.1.02

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. PRISMA 2020 flow chart for a systematic review including database and search engine searches.

下载 (237KB)
3. Fig. 2. Results of magnetic resonance imaging of the knee joint in the coronal plane, T2-weighted images [64]. Stages of ossification of the proximal tibial epiphysis and distal femoral epiphysis according to the classification of F. Dedouit et al. (2012): a — stage I; b — stage II; c — stage III; d — stage IV; e — stage V.

下载 (129KB)
4. Fig. 3. Results of magnetic resonance imaging of the knee joint in the coronal plane: a — T1-weighted image; b — T2-weighted image [63]. Ossification stages of the proximal tibial epiphysis and distal femoral epiphysis according to the classification of V. Vieth et al. (2018). TSE — turbo spin echo; SPIR — signal pre-saturation with inversion recovery.

下载 (432KB)

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81753 выдано 09.09.2021 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 – 59181 выдано 03.09.2014
г.



##common.cookie##