Forensic age estimation based on magnetic resonance imaging of the knee joint: a systematic review
- Authors: Zolotenkov D.D.1, Serova N.S.1, Zolotenkova G.V.1, Poletaeva M.P.1, Pigolkin Y.I.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University)
- Issue: Vol 10, No 4 (2024)
- Pages: 539-554
- Section: Systematic reviews
- Submitted: 31.07.2024
- Accepted: 07.11.2024
- Published: 05.12.2024
- URL: https://for-medex.ru/jour/article/view/16174
- DOI: https://doi.org/10.17816/fm16174
- ID: 16174
Cite item
Abstract
Background: The issue of age assessment is not only relevant in modern society but also socially significant. According to official statistics, 2021 saw a record number of migrants and refugees — over 89 million and 27.1 million, respectively. A significant proportion of them are children and adolescents under the age of 18, many of whom lack proper legal documents confirming their date of birth. In such cases, forensic age determination is necessary. From the perspective of safety and effectiveness, magnetic resonance imaging is considered the method of choice for age assessment. This highlights the need to explore its potential as a method for documenting and assessing the developmental status of the studied anatomical structure.
Aim: To analyze published data on the feasibility of using knee magnetic resonance imaging findings to determine the stage of epiphyseal ossification for forensic age estimation in children, adolescents, and young adults.
Materials and methods: A study protocol was developed and registered in PROSPERO (registration number CRD42022344779, 2022). Several search engines were used, including PubMed, Web of Science, and the Scopus database, to ensure a comprehensive review of current knowledge. Articles published in English from 1985 to 2021 were considered. Literature searches were conducted using the following keywords and term combinations: “age estimation”, “age determination”, “knee”, and “magnetic resonance imaging of the knee”.
Results: A total of 13 publications were selected and thoroughly analyzed. Differences among the studies were identified regarding magnetic resonance imaging research protocols, classifications used for determining the stage of epiphyseal ossification by age, and the specialization and experience level of the researchers. Significant heterogeneity in population samples was noted, including variations in the number of study subjects, the age range, and the uneven distribution within age groups.
Conclusion: The amount and heterogeneity of data in the studies included in this systematic review did not allow for a meta-analysis of the results or for predicting the risk of misclassification in the target age group. Therefore, at present, MRI-based knee age assessment cannot be considered an objective and legally substantiated forensic method.
Full Text

About the authors
Dmitry D. Zolotenkov
Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: Zolotenkovaspir@mail.ru
ORCID iD: 0000-0002-1224-1077
SPIN-code: 1352-8848
Россия, Moscow
Natalia S. Serova
Sechenov First Moscow State Medical University (Sechenov University)
Email: serova_n_s@staff.sechenov.ru
ORCID iD: 0000-0003-2975-4431
SPIN-code: 4632-3235
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
MoscowGalina V. Zolotenkova
Sechenov First Moscow State Medical University (Sechenov University)
Email: zolotenkova_g_v@staff.sechenov.ru
ORCID iD: 0000-0003-1764-2213
MD, Dr. Sci. (Medicine), Assistant Professor
Россия, MoscowMaria P. Poletaeva
Sechenov First Moscow State Medical University (Sechenov University)
Email: poletaeva_m_p@staff.sechenov.ru
ORCID iD: 0000-0003-0542-100X
SPIN-code: 4910-8281
MD, Cand. Sci. (Medicine)
Россия, MoscowYuri I. Pigolkin
Sechenov First Moscow State Medical University (Sechenov University)
Email: pigolkin@mail.ru
ORCID iD: 0000-0001-5370-4931
SPIN-code: 1426-5903
MD, Dr. Sci. (Medicine), Proffessor, Corresponding Member of the Russian Academy of Sciences
Россия, MoscowReferences
- References
- Doklad UVKB OON o global'nyh tendenciyah (2021). https://unhcr.org/globaltrends (in Russian)
- EASO (2018). Practical guide on age assessment, second edition. Technical report EASO. https://doi.org/10.2847/29226
- EASO (2018). EASO Practical Guide on age assessment. 2nd edition. https://doi.org/10.2847/23618732
- AGFAD (2018). Stellungnahme: Forensische Altersdiagnostik bei unbegleiteten minderjährigen Flüchtlingen. Arbeitsgemeinschaft für Forensische Altersdiagnostik. https://www.dgrm.de/institute/deutschland/institut-essen/news-essen/stel.... Accessed 15.5.2020
- Glybochko P.V., Pigolkin Yu.I., Nikolenko V.N, Zolotenkova G.V., Efimova A.A., Alekseev Yu.D.. Sudebno-medicinskaja diagnostika vozrasta. Moskva: 2016. Izdatel'stvo PMGMU im. I.M. Sechenova, 2016. (in Russian)
- Schmeling A., Grundmann C., Fuhrmann A., Kaatsch H.-J., Knell B., Ramsthaler F. et al Criteria for age estimation in living individuals. Int J Legal Med. 2008;122(6):457
- Schmeling A., Dettmeyer R., Rudolf E., Vieth V., Geserick G. Forensic age estimation: methods, certainty, and the law. Deutsches. Arzteblatt International 2016; 113(4):44
- Ritz-Timme S., Kaatsch H.J., Marré B., Reisinger W., Riepert T., Rösing F.W. et.al. Empfehlungen für die Altersdiagnostik bei Lebenden im Rentenverfahren. Rechtsmedizin.2002; 12(4):193–194. https://doi.org/10.1007/s00194-002-0159-1
- Scendoni R., Zolotenkova G.V., Vanin S., Pigolkin Y.I., Cameriere R. Forensic Validity of the Third Molar Maturity Index (I3M) for Age Estimation in a Russian Population. BioMed research international.2020; 6670590. https://doi.org/10.1155/2020/6670590.
- Angelakopoulos N., De Luca S., Oliveira-Santos I. et al. Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample. Int J Legal Med. 2023; 137:403–425. https://doi.org/10.1007/s00414-022-02930-x
- Wittschieber et al. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med .2014; 128:183-191
- Cameriere R., De Luca S., De Angelis D., Merelli V., Giuliodori A., Cingolani M. et.al. Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med. 2012; 126 (6):923-32. doi: 10.1007/s00414-012-0769-4
- Lopatin O., Barszcz M., Bolechala F., Wozniak K. J. All rights reserved. The fusion of ossification centers – A comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Legal Medicine.2013; 61:102185
- Dhamo B., Kragt L., Grgic O., Vucic S., Medina-Gomez C., Rivadeneira F. et al. Ancestry and dental development: a geographic and genetic perspective. Am J. Phys Anthropol. 2018; 165(2):299–308. https://doi.org/10.1002/ajpa.23351
- Cameriere R., Ferrante L., De Angelis D., Scarpino F., Galli F. The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18-year-olds in living subjects. Int J Legal Med. 2008; 122:493–497. https://doi.org/10.1007/s00414-008-0279-6
- Cameriere R., Bestetti F., Velandia Palacio L.A., Riccomi G., Skrami E., Parente V.et al. Carpals and epiphyses of radius and ulna as age indicators using longitudinal data: a Bayesian approach. Int J Legal Med. 2019;133(1):197-204. doi: 10.1007/s00414-018-1807-7.
- Quispe Lizarbe R.J., Solís Adrianzén C., Quezada-Márquez M.M., Galić I., Cameriere R. Demirjian’s stages and Cameriere’s third molar maturity index to estimate legal adult age in Peruvian population. Leg Med (Tokyo). 2017; 25:59–65. https://doi.org/10.1016/j.legalmed.2017.01.003
- Angelakopoulos N., Galić I., Balla S.B., Kiş H.C., Gómez Jiménez L., Zolotenkova G. et.al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: a multi-ethnic study sample. Int J Legal Med.2020; 135(6):2423–2436. https://doi.org/10.1007/s00414-021-02656-2
- Scharte P., Vieth V., Schulz R., Ramsthaler F., Püschel K., Bajanowski T. et.al. Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med. 2017; 131(5):1391-1397. doi: 10.1007/s00414-017-1615-5.
- Tozakidou M., Apine I., Petersen K.U., Weinrich J.M., Schindera S., Jopp-van Well E. et.al. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation. Int J Legal Med. 2020; 134(1):355-361. doi: 10.1007/s00414-019-02214-x.
- Tozakidou M., Meister R.L., Well L., Petersen K.U., Schindera S., Jopp-van Well E. et.al. CT of the medial clavicular epiphysis for forensic age estimation: hands up? Int J Legal Med. 2021; 135(4):1581-1587. doi: 10.1007/s00414-021-02516-z.
- Schmeling A., Püschel K., Krause D. Forensische Altersdiagnostik bei Lebenden im Strafverfahren. 2004.
- Baumann U., Schulz R., Reisinger W., Heinecke A., Schmeling A., Schmidt S., Reference study on the time frame for ossification of the distal radius and ulnar epiphyses on the hand radiograph, Forensic. Sci. Int.2009; 191 (1–3): 15–18, https://doi.org/10.1016/j.forsciint.2009.05.023.
- Schmidt S., Baumann U., Schulz R., Reisinger W., Schmeling A. Study of age dependence of epiphyseal ossification of the hand skeleton, Int. J. Legal. Med. 2008; 122 (1): 51–54, https://doi.org/10.1007/s00414-007-0209-z.
- Hisham S., Flavel A., Abdullah N., Noor M.H.M., Franklin D. Quantification of sphenooccipital synchondrosis fusion in a contemporary Malaysian population, Forensic. Sci. Int. 2018; 284:78–84, https://doi.org/10.1016/j. forsciint.2017.12.046.
- Demirturk Kocasarac H., Sinanoglu A., Noujeim M., Helvacioglu Yigit D., Baydemir C., Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study, Int. J. Legal. Med. 2016; 130 (3): 799–808 https://doi.org/10.1007/s00414-015-1298-8.
- Sinanoglu A., Kocasarac H.D., Noujeim M. Age estimation by an analysis of spheno-occipital synchondrosis using cone-beam computed tomography. Leg Med (Tokyo). 2016 ;18:13-9. doi: 10.1016/j.legalmed.2015.11.004.
- Soliman K. E. A., Shehri F.Al, AlThaqufi O. J. Age estimation of epiphyseal union around wrist joint and its correlation with chronological age: A radiological study in Qassim population, Saudi Arabia, Australian Journal of Forensic Sciences. 2022
- https://doi.org/10.1080/00450618.2022.2043437
- Sobh Z.K., Mohamed A.S. A Computed Tomographic Analysis of Spheno-Occipital Synchondrosis Ossification for Age Estimation in a Sample of Egyptians, Am. J. Forensic. Med. Pathol. 2021; 42 (3): 235–242, https://doi.org/10.1097/ PAF.0000000000000645.
- Candan B., Akın S. D., Dilek E. G., Didem K. Analysis of fusion of sphenooccipital synchondrosis using computed tomography in Turkish population. Australian Journal of Forensic Sciences.2022 doi: 10.1080/00450618.2022.2123112
- Bayrak S., G¨oller Bulut D., Relationship between condyle cortication, sphenooccipital synchondrosis, and chronological age, Oral. Radiol. 36 (2) (2020) 190–196, https://doi.org/10.1007/s11282-019-00398-x.
- Fan F., Dong X., Wu X., Li R., Dai X., Zhang K., Huang F., Deng Z., An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs, Forensic. Sci. Int. 2020; 314: 110350, https://doi.org/10.1016/j.forsciint.2020.110350.
- Ekizoglu O., Inci E., Erdil I., Hocaoglu E., Bilgili M.G., Kazimoglu C., Reisoglu A., Can I.O. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals. Int J Legal Med. 2016 ;130(4):1101-1107. doi: 10.1007/s00414-016-1345-0
- Tang X., Lu Y., Pang M. et al. An Abbreviated Scale for the Assessment of Skeletal Bone Age Using Radiographs of the Knee. Orthopedics. 2018;41(5):e676-e680. doi: 10.3928/01477447-20180724-03
- Welson N.N., Basset ASAE. Age and sex estimation by knee roentgenographic assessment: An Egyptian population study. Journal of Forensic Radiology and Imaging. 2019; 18:4-10. doi: 10.1016/j.jofri.2019.07.002
- Pröve P-L., Jopp-van Well E., Stanczus B. et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med. 2019; 133(4):1191-1205. doi: 10.1007/s00414-018-1953-y
- Ottow C., Schulz R., Pfeiffer H., Heindel W., Schmeling A., Vieth V. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol. 2017; 27(12):5041-5048. doi: 10.1007/s00330-017-4880-2
- O’Connor J.E., Coyle J., Bogue C., Spence L.D., Last J. Age prediction formulae from radiographic assessment of skeletal maturation at the knee in an Irish population. Forensic Science International. 2014; 234:188.e1-188.e8. doi: 10.1016/j.forsciint.2013.10.032
- O’Connor J.E., Bogue C., Spence L.D., Last J. A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study. J Anatomy. 2008; 212(2):198-209. doi: 10.1111/j.1469-7580.2007.00847.x
- O’Connor J.E., Coyle J., Spence L.D., Last J. Epiphyseal maturity indicators at the knee and their relationship to chronological age: Results of an Irish population study: Epiphyseal Maturity Indicators at the Knee. Clin Anat. 2013; 26(6):755-767. doi: 10.1002/ca.22122
- Mauer M.A. der, Well E.J., Herrmann J. et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med. 2021; 135(2):649-663. doi: 10.1007/s00414-020-02465-z
- Maggio A. The skeletal age estimation potential of the knee: Current scholarship and future directions for research. Journal of Forensic Radiology and Imaging. 2017; 9:13-15. doi: 10.1016/j.jofri.2017.05.002
- Kvist O.F., Dallora A.L., Nilsson O, et al. Comparison of reliability of magnetic resonance imaging using cartilage and T1-weighted sequences in the assessment of the closure of the growth plates at the knee. Acta Radiologica Open. 2020; 9(9):205846012096273. doi: 10.1177/2058460120962732
- Krämer J.A., Schmidt S., Jürgens K.-U., Lentschig M., Schmeling A., Vieth V. The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol. 2014; 10(3):306-313. doi: 10.1007/s12024-014-9559-2
- Herrmann J., Säring D., Auf der Mauer M., Groth M., Jopp-van Well E. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI. Eur Radiol. 2020. doi: 10.1007/s00330-020-07343-1
- Hackman L., Black S. Age Estimation from Radiographic Images of the Knee. J Forensic Sci. 2013;58(3):732-737. doi: 10.1111/1556-4029.12077
- Gurses M.S., Altinsoy H.B. Evaluation of distal femoral epiphysis and proximal tibial epiphysis ossification using the Vieth method in living individuals: applicability in the estimation of forensic age. Australian Journal of Forensic Sciences. 2020:1-17. doi: 10.1080/00450618.2020.1743357
- Galić I., Mihanović F., Giuliodori A., Conforti F., Cingolani M,. Cameriere R. Accuracy of scoring of the epiphyses at the knee joint (SKJ) for assessing legal adult age of 18 years. Int J Legal Med. 2016;130(4):1129-1142. doi: 10.1007/s00414-016-1348-x
- Fan F., Zhang K., Peng Z., Cui J., Hu N., Deng Z. Forensic age estimation of living persons from the knee: Comparison of MRI with radiographs. Forensic Science International. 2016; 268:145-150. doi: 10.1016/j.forsciint.2016.10.002
- Faisant M., Rerolle C., Faber C., Dedouit F., Telmon N., Saint-Martin P. Is the persistence of an epiphyseal scar of the knee a reliable marker of biological age? Int J Legal Med. 2015;129(3):603-608. doi: 10.1007/s00414-014-1130-x
- El-Din E.A.A,. Mostafa H.E.S., Tantawy E.F., El-Shafei D.A. Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? Forensic Sci Med Pathol. 2019; 15(3):352-361. doi: 10.1007/s12024-019-00116-3
- Ekizoglu O., Er A., Bozdag M. et al. Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence. Int J Legal Med, 2020. doi: 10.1007/s00414-020-02402-0
- Dedouit F., Auriol J., Rousseau H., Rougé D., Crubézy E., Telmon N.. Age assessment by magnetic resonance imaging of the knee: A preliminary study. Forensic Science International. 2012; 217(1-3):232.e1-232.e7. doi: 10.1016/j.forsciint.2011.11.013
- Dallora A.L., Berglund J.S., Brogren M. et al. Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR Med Inform. 2019; 7(4):e16291. doi: 10.2196/16291
- Dallora A.L., Anderberg P., Kvist O., Mendes E., Diaz Ruiz S., Sanmartin Berglund J. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. Stoean R, ed. PLoS ONE. 2019; 14(7):e0220242. doi: 10.1371/journal.pone.0220242
- Daghighi M.H., Pourisa M., Javanpour-Heravi H. et al. Application of knee MRI in forensic age estimation: A retrospective cohort. Radiography. Published online July 2020:S1078817420301231. doi: 10.1016/j.radi.2020.06.019
- Chowdhuri S., Das S., Ghosh R. Estimation of Forensic Age from Bony Fusion of Distal Femoral and Proximal Tibial Epiphyses by MRI of the Knee. BJFS. 2020; 9(2):185-194. doi: 10.17063/bjfs9(2)y2020185
- Cameriere R., Cingolani M., Giuliodori A., De Luca S., Ferrante L. Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med. 2012; 126(6):889-899. doi: 10.1007/s00414-012-0754-y
- Boeyer M.E., Ousley S.D. Skeletal assessment and secular changes in knee development: a radiographic approach: Boeyer and Ousley. Am J Phys Anthropol. 2017;162(2):229-240. doi: 10.1002/ajpa.23110
- Mauer M., Säring D., Stanczus B., Herrmann J., Groth M., Jopp-van Well E. A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med. 2019;133(1):205-215. doi: 10.1007/s00414-018-1826-4
- Altinsoy H.B., Alatas O., Gurses M.S., Turkmen Inanir N. Forensic age estimation in living individuals by 1.5T magnetic resonance imaging of the knee: a retrospective MRI study. Australian Journal of Forensic Sciences. 2020; 52(4):439-453. doi: 10.1080/00450618.2018.1545868
- Alatas O., Altınsoy H.B., Gurses M.S., Balci A. Evaluation of knee ossification on 1.5 T magnetic resonance images using the method of Vieth et al.: A retrospective magnetic resonance imaging study. Rechtsmedizin. 2021; 31(1):50-58. doi: 10.1007/s00194-020-00432-x
- Uygun B., Kaya K., Köse S., Ekizoğlu O., Hilal A. Applicability of Magnetic Resonance Imaging of the Knee in Forensic Age Estimation. Am J Forensic Med Pathol. 2021; 42(2):147-154. doi: 10.1097/PAF.0000000000000634
- Vieth V., Schulz R., Heindel W. et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol. 2018;28(8):3255-3262. doi: 10.1007/s00330-017-5281-2
- Ekizoglu O., Hocaoglu E., Inci E., Can I.O., Aksoy S., Kazimoglu C. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique. Forensic Science International. 2016; 260:102.e1-102.e7. doi: 10.1016/j.forsciint.2015.12.006
- Dogaroiu C., Avramoiu M. Correlation between chronological age and the stage of union of the distal femur and proximal tibia epiphyses in a Romanian sample population. RJLM. 2015; 23(3):171-176. doi: 10.4323/rjlm.2015.171
- Aly S.M., Shrestha B., Hong D.J., Omran A., Wang W. Identification of age and sex based on knee radiography. Forensic Science International. 2016; 267:231.e1-231.e7. doi: 10.1016/j.forsciint.2016.08.001
- Margalit A., Cottrill E., Nhan D., Yu L., Tang X., Fritz J., Lee R.J. The Spatial Order of Physeal Maturation in the Normal Human Knee Using Magnetic Resonance Imaging. J Pediatr Orthop. 2019;39(4):e318-e322. doi: 10.1097/BPO.0000000000001298.
- Krämer J.A., Schmidt S., Jürgens K.U., Lentschig M., Schmeling A., Vieth V. Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med. 2014; 128(3):509-14. doi: 10.1007/s00414-014-0967-3.
- Kellinghaus M., Schulz R., Vieth V., Schmidt S., Pfeiffer H., Schmeling A. Enhanced possibilities to make statements on the ossificationstatusofthemedialclavicularepiphysisusinganamplifiedstaging scheme in evaluating thin-slice CT scans. Int J Legal Med.2010; 124: 321–325
- Schmeling A., Schulz R., Reisinger W., Muhler M., Wernecke K.D., Geserick G. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med.2004; 118:5 –8
- De Tobel J., Bauwens J., Parmentier G.I.L., Franco A., Pauwels N.S., Verstraete K.L., Thevissen P.W. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol. 2020;50(12):1691-1708. doi: 10.1007/s00247-020-04709-x.
- Boldsen J.L., Milner G.R., Konigsberg L.W., Wood J.W. Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge; 2002 :73–106
- Zolotenkova G.V., Rogachev A.I., Pigolkin Y.I., Edelev I.S., Borshchevskaya V.N., Cameriere R. Age сlassification in forensic medicine using machine learning techniques. Sovremennye tehnologii v medicine 2022; 14(1): 15. https://doi.org/10.17691/stm2022.14.1.02
- Zolotenkov DD, Trufanov MI, Solodovnikov VI. Individual age determination based on computed tomography knee analysis using artificial neural networks and computer vision: Preliminary results. Russian Journal of Forensic Medicine. 2023;9(4):403–412. DOI: https://doi.org/10.17816/fm11915
Supplementary files
