关于人工智能在法医鉴定程序决策中的应用

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

本文探讨了人工智能在法医鉴定领域中的应用现状及其在程序决策中的使用前景。尽管人工智能为法医鉴定开启了新机遇,但同时也需要关注潜在风险。

研究分析了多个国家在法医鉴定领域引入人工智能的实践,特别是在程序决策中的应用。文献分析表明,法医精神病学是人工智能应用的领先领域。

通过对国内外相关研究成果的汇总与分析,作者明确了人工智能在法医鉴定领域的应用范围,并指出了需要特别关注的一些问题。

人工智能在法医鉴定中的应用是一场革命性进步,为数据分析和解释过程的优化提供了新的可能。然而,尽管人工智能具有显著潜力,人工在关键决策中的作用仍不可替代。当前阶段,人工智能应被视为一种重要的辅助工具,而非对人类经验的替代品。由于计算机科学的现阶段发展,人类仍然在背景解释和合理决策中起着关键作用。

本文还对人工智能在法医鉴定程序决策中的应用进行了SWOT分析,总结了其应用的优势和不足。

全文:

受限制的访问

作者简介

Dinara R. Nurkeyeva

Academy of Law Enforcement Agencies Under the General Prosecutors Office of the Republic of Kazakhstan

编辑信件的主要联系方式.
Email: din_uriste@mail.ru
ORCID iD: 0000-0003-2666-4801
SPIN 代码: 9626-2368

MD

哈萨克斯坦, Kosshy

Yernar N. Begaliyev

Academy of Law Enforcement Agencies Under the General Prosecutors Office of the Republic of Kazakhstan

Email: ernar-begaliev@mail.ru
ORCID iD: 0000-0001-6659-8576
SPIN 代码: 1929-3392

Dr. Sci. (Jurisprudence), Professor

哈萨克斯坦, Koshy

Maral T. Abzalbekova

Karaganda University named on E.A. Buketov

Email: abzalbekoba@mail.ru
ORCID iD: 0009-0001-9929-4816
SPIN 代码: 9829-0326
哈萨克斯坦, Karaganda

Ardak A. Biyebayeva

Academy of Justice under the Supreme Court of the Republic of Kazakhstan

Email: ardak_22@mail.ru
ORCID iD: 0009-0003-8961-7815
SPIN 代码: 2220-8626

Cand. Sci. (Jurisprudence), Assistant Professor

哈萨克斯坦, Astana

Farida S. Zhaxybekova

Maqsut Narikbayev University

Email: zaksybekovafarida@gmail.com
ORCID iD: 0000-0003-2770-6356
SPIN 代码: 5202-1033

Cand. Sci. (Jurisprudence), Assistant Professor

哈萨克斯坦, Astana

参考

  1. Barinov EKh, Tikhomirov AV. Medical expertise on the legal field. Meditsinskaya ekspertiza i pravo. 2012;(1):3–4. (In Russ.) EDN: OXWLZJ
  2. Kuppala J, Srinivas Kandala K, Anudeep P, et al. Benefits of artificial intelligence in the legal system and law enforcement. In: Conference: 2022 International Mobile and Embedded Technology Conference (MECON). IEEE; 2022. doi: 10.1109/MECON53876.2022.9752352
  3. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. doi: 10.1186/s12909-023-04698-z
  4. Barinov EKh, Mikheeva NA, Kalinin RE, Tarasova NV. Internal quality control of forensic medical examinations in cases involving failure to provide medical care. Russ J For Med. 2020;6(1):46–50. EDN: VPSFMQ doi: 10.19048/2411-8729-2020-6-1-46-50
  5. Gavrilova YuA. The concept of integrating artificial intelligence into the legal system. RUDN J Law. 2021;25(3):673–692. EDN: PXTNWU doi: 10.22363/2313-2337-2021-25-3-673-692
  6. Hmyz AI. Using the power of artificial intelligence in judicial expertise. Vestnik economicheskoi bezopasnosti = Bulletin of economic security. 2022;(5):224–227. EDN: XTVDHS doi: 10.24412/2414-3995-2022-5-224-227
  7. Vodanović M, Subašić M, Milošević DP, et al. Artificial intelligence in forensic medicine and forensic dentistry. J Forensic Odontostomatol. 2023;41(2):30–41.
  8. Attia ZI, Friedman PA, Noseworthy PA, et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ Arrhythm Electrophysiol. 2019;12(9):e007284. doi: 10.1161/CIRCEP.119.007284
  9. Ghildiyal A, Sharma S, Verma I, et al. Age and gender predictions using artificial intelligence algorithm. In: Conference: 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). IEEE; 2020. doi: 10.1109/ICISS49785.2020.9316053
  10. Yang CY, Pan YJ, Chou Y, et al. Using deep neural networks for predicting age and sex in healthy adult chest radiographs. J Clin Med. 2021;10(19):4431. doi: 10.3390/jcm10194431
  11. Niazi MK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253–e261. doi: 10.1016/S1470-2045(19)30154-8
  12. Lefèvre T, Tournois L. Artificial intelligence and diagnostics in medicine and forensic science. Diagnostics (Basel). 2023;13(23):3554. doi: 10.3390/diagnostics13233554
  13. Försch S, Klauschen F, Hufnagl P, Roth W. Artificial intelligence in pathology. Dtsch Arztebl Int. 2021;118(12):194–204. doi: 10.3238/arztebl.m2021.0011
  14. Wankhade TD, Ingale SW, Mohite PM, Bankar NJ. Artificial intelligence in forensic medicine and toxicology: The future of forensic medicine. Cureus. 2022;14(8):e28376. doi: 10.7759/cureus.28376
  15. Bahado-Singh R, Vlachos KT, Aydas B, et al. Precision oncology: Artificial intelligence and DNA methylation analysis of circulating cell-free DNA for lung cancer detection. Front Oncol. 2022;12:790645. doi: 10.3389/fonc.2022.790645
  16. Raponi S, Oligeri G, Ali IM. Sound of guns: Digital forensics of gun audio samples meets artificial intelligence. Multimedia Tools Applications. 2022;81(2):30387–30412. doi: 10.1007/s11042-022-12612-w
  17. Kudonu M, Al-Shamsi MA, Philip S, et al. Artificial intelligence: Future of firearm examination. In: Conference: 2022 Advances in Science and Engineering Technology International Conferences (ASET). IEEE; 2022. doi: 10.1109/ASET53988.2022.9735105
  18. Egiazarov A, Mavroeidis V, Zennaro FM, Vishi K. Firearm detection and segmentation using an ensemble of semantic neural networks. In: Conference: 2019 European Intelligence and Security Informatics Conference (EISIC). IEEE; 2019. doi: 10.1109/EISIC49498.2019.9108871
  19. Costantini S, De Gasperis G, Olivieri R. Digital forensics and investigations meet artificial intelligence. Anne Mathematics Artificial Intelligence. 2019;86(12):193–229. doi: 10.1007/s10472-019-09632-y
  20. Jarrett A, Choo KK. The impact of automation and artificial intelligence on digital forensics. Wiley Interdisciplinary Rev Forensic Sci. 2021;3(4). doi: 10.1002/wfs2.1418
  21. Dong XY, Niu XQ, Zhang ZY, et al. Red fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program. ACS Appl Mater Interfaces. 2020;12(26):29549–29555. doi: 10.1021/acsami.0c01972
  22. Singh A, Aseri V, Nagar V, et al. Artificial intelligence in fingerprint identification. In book: Artificial Intelligence in Forensic Science. 1st edition. CRC Press; 2024. 13 р.
  23. Zhao X. Image technology investigation based on fingerprint devices and artificial intelligence. Int J Adv Computer Sci Applications (IJACSA). 2024;15(6):387–395.
  24. Nawaz N. Artificial intelligence applications for face recognition in recruitment process. J Management Inform Decision Sci. 2020;23(S1):499–509.
  25. Le TH. Applying artificial neural networks for face recognition. Adv Artificial Neural Systems. 2011;2011(3):673016. doi: 10.1155/2011/673016
  26. Chary MA, Manini AF, Boyer EW, Burns M. The role and promise of artificial intelligence in medical toxicology. J Med Toxicol. 2020;16(4):458–464. doi: 10.1007/s13181-020-00769-5
  27. Nasnodkar S, Cinar B, Ness S. Artificial intelligence in toxicology and pharmacology. J Engineering Res Rep. 2023;25(7):192–206. EDN: VXIRSI doi: 10.9734/jerr/2023/v25i7952
  28. Sadykov MB, Begaliyev YN, Bakhteev DV, et al. Use of artificial intelligence and human chipping in forensic medicine: A review. Russ J For Med. 2024;10(1):88–98. EDN: LXZIJZ doi: 10.17816/fm16093
  29. Orakbayev AB, Kurmangali ZhK, Begaliyev YeN, et al. On the issue of using the results of a virtual autopsy in criminal investigation: A review. Russ J For Med. 2023;9(2):183–192. EDN: OEERGD doi: 10.17816/fm774
  30. Maltsev VA, Murzhina AS, Suchkova TE. Use of artificial intelligence capabilities in forensic activity. Voprosy sovremennoi nauki i praktiki. 2023;(2):21–26. EDN: IQNRDF
  31. Bakhteev DV. Artificial intelligence: Ethical and legal foundations. Monograph. Moscow: Prospekt; 2021. 176 р. (In Russ.) EDN: TZMPRL doi: 10.31085/9785392334131-2021-176
  32. Tumanova LV. Features of evidence in cases related to provision of medical services. Vestnik Tver State University. Series: Law. 2022;(2):123–130. EDN: ERYYMH doi: 10.26456/vtpravo/2022.2.123
  33. Voyevodkin DV, Rustemova GR, Begaliyev YeN, et al. Identifying fake conclusions of forensic medical examinations using an artificial intelligence technology based on the experience in the Republic of Kazakhstan: A review. Russ J For Med. 2023;9(3):287–298. EDN: EFNJIE doi: 10.17816/fm8270
  34. Gurel E, Tat M. SWOT analysis: A theoretical review. J Int Social Res. 2017;10(51):994–1006. doi: 10.17719/jisr.2017.1832

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81753 выдано 09.09.2021 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 – 59181 выдано 03.09.2014
г.



##common.cookie##