基于放射学数据对骨折时效进行法医鉴定:科学综述
- 作者: Li Y.B.1,2, Vishniakova M.V.1, Maksimov A.V.1,3
-
隶属关系:
- Moscow Regional Research and Clinical Institute
- Primorsky Regional Bureau of Forensic Medicine
- Federal State University of Education
- 期: 卷 10, 编号 2 (2024)
- 页面: 229-240
- 栏目: 科学评论
- ##submission.dateSubmitted##: 02.11.2023
- ##submission.dateAccepted##: 22.01.2024
- ##submission.datePublished##: 19.06.2024
- URL: https://for-medex.ru/jour/article/view/16085
- DOI: https://doi.org/10.17816/fm16085
- ID: 16085
如何引用文章
详细
在俄罗斯和国外,不同部位的骨折在创伤结构中占第二位。在法医专家的日常工作中,在对受害者、被告和其他人进行专家鉴定的过程中,骨骼外伤即使不是最常见的外伤,也是最主要的外伤之一。除了确定骨折形成的机理外,专家还面临受伤时间的问题。
一般来说,在有完整的检查对象的情况下,确定活人身体伤害发生的时间段并不特别困难。在没有主要临床和放射学数据的情况下,根据对照放射照片确定骨折年龄要困难得多。在这种情况下,专家只能获得相关部位的对照 X 光片作为研究对象,而这些X光片往往是在受伤很长时间后拍摄的。
在国内外的现代科学资料中,并没有明确的标准来根据放射学检查结果确定骨折的年龄。在法医学文献中,有专门论述这一问题的著作。不过,这些著作都是以组织学、组织化学、骨折学、超声波和其他研究方法的结果为基础,而不是以放射学为基础。在专门的创伤学文献中,骨折形成的时间问题并不是重点。
对文献的分析表明,研究放射学方法与法医实践任务息息相关。
全文:
作者简介
Yulia B. Li
Moscow Regional Research and Clinical Institute; Primorsky Regional Bureau of Forensic Medicine
编辑信件的主要联系方式.
Email: reineerdeluft@gmail.com
ORCID iD: 0000-0001-7870-5746
SPIN 代码: 2397-7425
MD
俄罗斯联邦, Moscow; VladivostokMarina V. Vishniakova
Moscow Regional Research and Clinical Institute
Email: cherridra@mail.ru
ORCID iD: 0000-0003-3838-636X
SPIN 代码: 1137-2991
MD, Dr. Sci. (Med.)
俄罗斯联邦, MoscowAleksandr V. Maksimov
Moscow Regional Research and Clinical Institute; Federal State University of Education
Email: mcsim2002@mail.ru
ORCID iD: 0000-0003-1936-4448
SPIN 代码: 3134-8457
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Moscow; Moscow参考
- Volotovsky PA, Sitnik AA, Beletsky AV. Infections after osteosynthesis of lower extremity long bones: Etiology, classification and diagnosis. Voennaya meditsina. 2018;(1):83–89. EDN: YPMQSE
- Matveev RP, Bragina SV. Radiology in traumatology and orthopedics: Selected sections: textbook. Arkhangelsk: Izd-vo Severnogo gosudarstvennogo meditsinskogo universiteta; 2018. 151 p. EDN: VMGEUT
- Salaev AV. Experimental and clinical assessment of the stability of extrafocal osteosynthesis of tubular bones with a new rod apparatus [dissertation abstract]: 14.01.15. Place of defence: Samara State Medical University. Penza; 2020. 20 р. (In Russ).
- Cherkashina ZA. Traumatology and orthopedics. Vol. 1. Moscow: Meditsinskoe informatsionnoe agentstvo; 2017. 544 p. (In Russ).
- Kokoreva I, Korenkov A, Solovyov I. Effect of osteomed forte on the terms of bone fracture consolidation in children and adolescents. Vrach. 2020;31(1):82–85. EDN: OTFBDD doi: 10.29296/25877305-2020-01-18
- Rasulova MR, Indiaminov SI. Possibilities of establishing the age of nasal bone fractures by methods of radial diagnostics. In: The 6 th International scientific and practical conference: Eurasian scientific congress (June 14–16, 2020) Barca Academy Publishing, Barcelona, Spain; 2020. P. 91.
- Strukov AI. Pathological anatomy: A textbook for students of higher professional education institutions. 6th ed., revised and additional. Moscow: GEOTAR-Media; 2019. 878 p. (In Russ).
- Thompson EM, Matsiko A, Farrell E, et al. Recapitulating endochondral ossification: A promising route to in vivo bone regeneration. J Tissue Eng. Regen Med. 2015;9(8):889–902. doi: 10.1002/term.1918
- Kaplan AV. Damage to bones and joints. 3rd ed. Moscow: Meditsina; 1979. 568 p.
- Albes G. Facharztprüfung radiologie: 5 aktualisierte und erweiterte Auflage. Stuttgart: Thieme (Verlag); 2022. 928 р.
- Volotovsky AI, Makarevich ER, Chirak VE. Bone tissue regeneration in normal and pathological conditions: method. recommendations. Minsk: Belarusian State Medical University; 2010. 24 p. (In Russ).
- Lyritis GP. Fracture healing and antiosteoporotic treatment. Osteoporoz i osteopatii. 2012;15(3):41–44. EDN: PWXZQX
- Chulikhina NA, Shestopalov KK, Plaksin VO. Comprehensive assessment of the duration of fractures in local damage to the diaphyseal sections of long tubular bones using an x-ray diagnostic method. Problemy ekspertizy v meditsine. 2001;1(4):3–6. EDN: ONJRLZ
- Brusko AT, Gaiko GV. Modern concepts of stages of bone tissue fractures reparative regeneration. Vіsnik ortopedії, travmatologії ta protezuvannya. 2014;(2):5–8. EDN: TDOIMN
- Volkov AV. Morphology of reparative osteogenesis and osseointegration in maxillofacial surgery [dissertation abstract]: 14.03.02. Place of defence: Peoples' Friendship University of Russia. Moscow; 2019. 48 р. (In Russ).
- Kavalersky GM, Garkavi AV, Silini LL, et al. Traumatology and orthopedics: textbook. Ed. by G.M. Kavalersky. 4th ed. Moscow: Akademiya; 2019. 636 p. (In Russ).
- Nagornov MN, Osipenkova-Vichtomova TK. Forensic medical aspects of bone tissue injuries and pathology. Forensic Med Exp. 2012;55(1):41–44. EDN: PEUKLJ
- Osipenkova-Vichtomova TK. Forensic histological examination of bone tissue. Moscow: Vikra; 2000. 144 p. (In Russ).
- Peksheva MS, Rankov MM, Petrova IV. The difficulties of radiological diagnosis phenomen of dysregeneration long bones fractures based on clinical cases. Med Visualizat. 2021;25(1):164–176. EDN: DSLATE doi: 10.24835/1607-0763-810
- Zagorodniy NV, Belinov NV. Fractures of the proximal femur. Moscow: GEOTAR-Media; 2020. 128 p. (In Russ).
- Sharmazanova EP, Moseliani H. X-ray diagnosis of false joint in tibial fractures. Promeneva dіagnostika, promeneva terapіya. 2016;4(3):111–114. (In Russ).
- Sharmazanova EP, Moseliani H. Analysis of reparative osteogenesis in diaphyseal fractures of tibia bones according to radiography. ScienceRise: Medical Science. 2017;8(16):51–53. (In Russ).
- Potekhina YP, Filatova AI, Tregubova ES, Mokhov DE. Mechanosensitivity of cells and its role in the regulation of physiological functions and the implementation of physiotherapeutic effects (review). Modern Technolog Med. 2020;12(4):77–90. EDN: BTRYBI doi: 10.17691/stm2020.12.4.10
- Sirak SV, Didenko MO, Sirak AG, et al. The role of mechanotransduction in the activation of physiological remodeling histione. Med News North Caucasus. 2021;16(4):399–404. EDN: KOWIQS doi: 10.14300/mnnc.2021.16095
- Borciani G., Montalbano G., Baldini N., et al. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020;(108):22–45. EDN: ZLUBCF doi: 10.1016/j.actbio.2020.03.043
- Chang B, Liu X. Osteon: Structure, turnover, and regeneration. Tissue Eng Part B Rev. 2022;28(2):261–278 doi: 10.1089/ten.TEB.2020.0322
- Entezari A, Swain MV, Gooding JJ, et al. A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomater. 2020;(118):100–112. EDN: WMPRMR doi: 10.1016/j.actbio.2020.10.012
- Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res. 2019;37(6):1263–1269. doi: 10.1002/jor.24205
- Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone Research. 2021;(149):115971. EDN: YZPJPU doi: 10.1016/j.bone.2021.115971
- Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–327. doi: 10.1177/0004563218759371
- Monemian Esfahani A, Rosenbohm J, Reddy K, et al. Tissue regeneration from mechanical stretching of cell-cell adhesion. Tissue Eng. Part C. Methods. 2019;25(11):631–640. doi: 10.1089/ten.TEC.2019.0098
- Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Research. 2020;(8):23. EDN: HYWSBV doi: 10.1038/s41413-020-0099-y
- Lindenbratei LD, Korolyuk IP. Medical radiology (basics of radiation diagnostics and radiation therapy): Textbook. 2nd ed., revised and additional. Moscow: Meditsina; 2000. 672 p. (In Russ).
- Reinberg SA. X-ray diagnosis of diseases of bones and joints. In two books. Vol. 1–2. Ed. 4, Spanish and additional. Moscow: Meditsina; 1964. 1104 p. (In Russ).
- Burov SA, Reznikov BD. Radiology in forensic medicine. Saratov: Izdatel'stvo Saratovskogo universiteta; 1975. 288 p. (In Russ).
- Ilyasova EB, Chekhonatskaya ML, Priezzhev VN. Radiation diagnostics. 2nd ed. Moscow: GEOTAR-Media; 2021. 430 p. (In Russ).
- Lagunova IG. X-ray anatomy of the skeleton (a guide for doctors). Moscow: Meditsina; 1981. 368 p. (In Russ).
- Garkavi AV, Lychagin AV, Kavalerskiy GM, et al. Traumatology and orthopedics. Moscow: GЕОTAR-Media; 2023. 784 p. (In Russ).
- Grebenkov AB. Forensic medical assessment of nasal bone fractures: reference and information materials. Kursk; 2015. 28 p. (In Russ).
- Pankratov AS, Rubtsov AA, Ogurtsov DA, et al. Current trends in the development of long tubular bones osteosynthesis. Sci Innovat Med. 2022;7(4):281–288. EDN: XBSMBG doi: 10.35693/2500-1388-2022-7-4-281-288
- Zedgenizdze GA. Clinical X-ray radiology. Vol. 3. Moscow: Meditsina; 1984. 463 р. (In Russ).
- Romanov PG, Devyaterikov AA, Shtempelyuk YR. Problems of forensic medical assessment of nasal bone fractures. Izbrannye voprosy sudebno-meditsinskoi ekspertizy. 2022;(21):103–105. EDN: COZRPM
- Panin MG, Bogdashevskaya VB, Alekseev AV. Characteristics of bone wound healing after vertical osteotomy of the branches of the lower jaw according to radiological data. Moscow: Moskovskii meditsinskii stomatologicheskii institut im. N.A. Semashko; 1990. 6 p. (In Russ).
- Pigolkin YuI, Nagornov MN, Lomyga PA, Barinov EKh. Features of healing of calvarial fractures. Sudebno-meditsinskaya ekspertiza. 2005;(1):7–10. (In Russ).
- Gabunia GV. Timing of osteosynthesis and some features of the process of consolidation of long tubular bones in combined traumatic brain injury. Meditsinskie novosti Gruzii. 2000;(6):15–18. (In Russ).
- Matsukatov FA, Gerasimov DV. Factors affecting theterms of fracture consolidation. N.N. Priorov J Traumatol Orthopedics. 2016;(2):50–57. EDN: WGESEZ
- Klimovtsky VG, Chernysh VY. Frequency of delayed consolidation of fractures in victims of different age groups and the influence of osteotropic therapy on it. Trauma. 2011;12(3):89–93. (In Russ).
- Prokhorov M, Kislov A, Elistratov D, et al. Effect of osteomed on consolidation of bone fractures. Vrach. 2016;(2):68–69. EDN: VQZUOX
- Lubenets A. Treatment of proximal femur injuries in older age group patients. Vrach. 2017;(7):66–67. EDN: ZEWQCP
- Lindenbraten LD, Naumov LB. Medical radiology. 2nd ed., revised. and additional. Moscow: Meditsina; 1984. 384 p. (In Russ).
- Protsenko AI, Gazhev AK, Gordeev GG, Zheltikov DI. The use of hydroxyapatite substance for the ostheosynthesis after comminuted thigh fractures. N.I. Pirogov J Surg. 2012;(1):10–14. EDN: PEJVLT
- Sadykova RI, Akhtyamov IF. Modern methods of medication and local therapy for delayed fracture consolidation (literature review). Genij ortopedii. 2022;28(1):116–122. EDN: NKPQNZ doi: 10.18019/1028-4427-2022-28-1-116-122
- Zavadovskaya VD, Popov VP, Akbashev OE, et al. Ultrasound monitoring of consolidation processes in fractures of long tubular bones in osteosynthesis using bioactive implants. J Radiol Nuclear Med. 2014;(5):40–48. EDN: TBCPJX
- Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012;8(3):133–143. doi: 10.1038/nrrheum.2012.1
- Verhoff MA, Kreutz K, Ramsthaler F, Schiwy-Bochat KH. Forensische anthropologie und osteology: Übersicht und definitionen. Dtsch Arztebl. 2006;103(12):A782–788.
- Stoss H, Pontz B, Brenner R, et al. Pathologisch-anatomische befunde am callus bei osteogenesis imperfecta. Aktuelle Aspekte der Osteologie. Springer-Verlag Berlin Heidelberg; 1992. P. 264–270.
- Albrecht K, Breitmeier D, Huefner T. Die pathomorphologie der calcaneusfraktur beim PKW-unfall. German; 2005. P. 248–252.
- Asadi K, Mardani-Kivi M, Aris A. The effect of substance abuse and smoking status on healing time of closed transverse femoral shaft fractures treated with open intramedullary nailing. Genij ortopedii. 2022;28(3):333–337. doi: 10.18019/1028-4427-2022-28-3-333-337