自杀过程中神经元环境的形态及功能变化
- 作者: Kislov M.A.1,2, Trusova D.S.1, Krupin K.N.1,3, Zhiganova M.S.1, Maksimov A.V.2
-
隶属关系:
- I.M. Sechenov First Moscow State Medical Univesity
- Moscow State Regional University
- Scientific Research Laboratory of Human Morphology
- 期: 卷 9, 编号 2 (2023)
- 页面: 165-174
- 栏目: 科学评论
- ##submission.dateSubmitted##: 05.05.2022
- ##submission.dateAccepted##: 13.10.2022
- ##submission.datePublished##: 29.06.2023
- URL: https://for-medex.ru/jour/article/view/723
- DOI: https://doi.org/10.17816/fm723
- ID: 723
如何引用文章
详细
多年来,自杀行为的发展一直是一个热门话题。每年关于脑组织存在新形态变化的报告越来越多,并且考虑微环境对神经元功能活动的变化和影响,以及与某些精神疾病发展的关系。形态变化不一定很明显,也不一定很明确,所以人们考虑将胶质纤维酸性蛋白(GFAP)的免疫组化检测作为一种补充诊断方法。
这篇分析文献综述涉及自杀中小胶质细胞、星形胶质细胞、少突胶质细胞和血脑屏障的形态研究的状况。根据综合数据,自杀行为发展过程中最具代表性的局部变化是由中缝核、前额叶皮层和前扣带回皮层决定的。一些证据表明,自杀行为的发展与前额叶皮层中炎症细胞因子的增加、前扣带回皮层中星形胶质细胞和少突胶质细胞之间的交流受损相关,并表明壳核、纹状体、楔前叶和楔叶、眶额皮层参与自杀行为的形成。
确定自杀死亡的特有形态学有可能为确认或排除死因评估中的自杀发展因素提供证据基础。
需要进一步研究,以便更清楚地了解法医鉴定实践中的变化,并且免疫组化分析被认为是了解自杀因素的潜在证据基础。
全文:

作者简介
Maxim A. Kislov
I.M. Sechenov First Moscow State Medical Univesity; Moscow State Regional University
Email: kislov@1msmu.ru
ORCID iD: 0000-0002-9303-7640
SPIN 代码: 3620-8930
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Moscow; MytishchiDaria S. Trusova
I.M. Sechenov First Moscow State Medical Univesity
编辑信件的主要联系方式.
Email: trusova_d_s@student.sechenov.ru
ORCID iD: 0000-0002-9062-8031
SPIN 代码: 6906-9238
Scopus 作者 ID: 57484068400
俄罗斯联邦, Moscow
Konstantin N. Krupin
I.M. Sechenov First Moscow State Medical Univesity; Scientific Research Laboratory of Human Morphology
Email: krupin@1msmu.ru
ORCID iD: 0000-0001-6999-8524
SPIN 代码: 1761-8559
MD, Cand. Sci. (Med.)
俄罗斯联邦, Moscow; SamaraMarianna S. Zhiganova
I.M. Sechenov First Moscow State Medical Univesity
Email: zhiganova.marianna@yandex.ru
ORCID iD: 0000-0003-1741-4229
SPIN 代码: 3031-8173
俄罗斯联邦, Moscow
Aleksandr V. Maksimov
Moscow State Regional University
Email: mcsim2004@inbox.ru
ORCID iD: 0000-0003-1936-4448
SPIN 代码: 3134-8457
MD, Dr. Sci. (Med), Assistant Professor
俄罗斯联邦, Mytishchi参考
- World Health Organization [Internet]. Suicide [cited 17 June 2021]. Available from: https://www.who.int/news-room/fact-sheets/detail/suicide. Accessed: 17.09.2022.
- Chesney E, Goodwin GM, Fazel S. Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry. 2014;13(2):153–160. doi: 10.1002/WPS.20128
- Vahid-Ansari F, Albert PR. Rewiring of the serotonin system in major depression. Front Psychiatry. 2021;12:802581. doi: 10.3389/fpsyt.2021.802581
- Lutz PE, Mechawar N, Turecki G. Neuropathology of suicide: recent findings and future directions. Mol Psychiatry. 2017;22(10):1395–1412. doi: 10.1038/mp.2017.141
- Ginhoux F, Prinz M. Origin of microglia : current concepts and past controversies. Cold Spring Harb Perspect Biol. 2015:7(8):a020537. doi: 10.1101/cshperspect.a020537
- Butovsky O, Siddiqui S, Gabriely G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest. 2012;122(9):3063–3087. doi: 10.1172/JCI62636
- Rangaraju S, Raza SA, Li NX, et al. Differential phagocytic properties of CD45low microglia and CD45high brain mononuclear phagocytes-activation and age-related effects. Front Immunol. 2018;(9):405. doi: 10.3389/fimmu.2018.00405
- Courtet P, Giner L, Seneque M, et al. Neuroinflammation in suicide: Toward a comprehensive model. World J Biol Psychiatry. 2016;17(8):564–586. doi: 10.3109/15622975.2015.1054879
- Mccarty MF, Lerner A. Expert review of neurotherapeutics the second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev Neurother. 2021;21(5):559–570. doi: 10.1080/14737175.2021.1907182
- Steiner J, Walter M, Gos T, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission ? J Neuroinflammation. 2011;(8):94. doi: 10.1186/1742-2094-8-94
- Baharikhoob P, Kolla NJ. Microglial dysregulation and suicidality: a stress-diathesis perspective. Front Psychiatry. 2020;11:781. doi: 10.3389/FPSYT.2020.00781
- Brisch R, Steiner J, Mawrin C, et al. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur Arch Psychiatry Clin Neurosci. 2017;267(5):403–415. doi: 10.1007/S00406-017-0774-1
- Brisch R, Wojtylak S, Saniotis A, et al. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci. 2022;272(6):929–945. doi: 10.1007/S00406-021-01334-Z
- Krzyżanowska M, Rębała K, Steiner J, et al. Reduced ribosomal DNA transcription in the prefrontal cortex of suicide victims: consistence of new molecular RT-qPCR findings with previous morphometric data from AgNOR-stained pyramidal neurons. Eur Arch Psychiatry Clin Neurosci. 2021;271(3):567–576. doi: 10.1007/S00406-021-01232-4
- Torres-Platas SG, Cruceanu C, Chen GG, et al. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–59. doi: 10.1016/j.bbi.2014.05.007
- Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018;87(Pt A):126–146. doi: 10.1016/j.pnpbp.2017.10.002
- Torres-Platas SG, Hercher C, Davoli MA, et al. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology. 2011;36(13):2650–2658. doi: 10.1038/NPP.2011.154
- Oudega ML, Siddiqui A, Wattjes MP, et al. Are apathy and depressive symptoms related to vascular white matter hyperintensities in severe late life depression? J Geriatr Psychiatry Neurol. 2021;34(1):21–28. doi: 10.1177/0891988720901783
- Grangeon MC, Seixas C, Quarantini LC, et al. White matter hyperintensities and their association with suicidality in major affective disorders: A meta-analysis of magnetic resonance imaging studies. CNS Spectr. 2010;15(6):375–381. doi: 10.1017/s1092852900029242
- Sachs-Ericsson N, Hames JL, Joiner TE, et al. Differences between suicide attempters and nonattempters in depressed older patients: depression severity, white-matter lesions, and cognitive functioning. Am J Geriatr Psychiatry. 2014;22(1):75–85. doi: 10.1016/J.JAGP.2013.01.063
- Lin C, Huang CM, Karim HT, et al. Greater white matter hyperintensities and the association with executive function in suicide attempters with late-life depression. Neurobiol Aging. 2021;103:60–67. doi: 10.1016/j.neurobiolaging.2020.12.016
- Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi: 10.1016/j.bbi.2019.06.015
- Cobb JA, O’Neill K, Milner J, et al. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience. 2016;316:209–220. doi: 10.1016/j.neuroscience.2015.12.044
- O’Leary LA, Belliveau C, Davoli MA, et al. Widespread decrease of cerebral vimentin-immunoreactive astrocytes in depressed suicides. Front Psychiatry. 2021;12:640963. doi: 10.3389/fpsyt.2021.640963
- Sacchet MD, Gotlib IH. Myelination of the brain in major depressive disorder: An in vivo quantitative magnetic resonance imaging study. Sci Rep. 2017;7(1):2200. doi: 10.1038/S41598-017-02062-Y
- Kumar A, Gupta RC, Thomas MA, et al. Biophysical changes in normal-appearing white matter and subcortical nuclei in late-life major depression detected using magnetization transfer. Psychiatry Res. 2004;130(2):131–140. doi: 10.1016/J.PSCYCHRESNS.2003.12.002
- Chandley MJ, Szebeni A, Szebeni K, et al. Markers of elevated oxidative stress in oligodendrocytes captured from the brainstem and occipital cortex in major depressive disorder and suicide. Prog Neuropsychopharmacology Biol Psychiatry. 2022;(117):110559. doi: 10.1016/J.PNPBP.2022.110559
- Cheli VT, Correale J, Paez PM, Pasquini JM. Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro. 2020;12:1759091420962681. doi: 10.1177/1759091420962681
- Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry. 2004;55(6):563–569. doi: 10.1016/j.biopsych.2003.11.006
- Maheu M, Lopez JP, Crapper L, et al. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression. Transl Psychiatry. 2015;5(2):e511. doi: 10.1038/TP.2015.11
- Bayard-Burfield L, Alling C, Blennow K, et al. Impairment of the blood-CSF barrier in suicide attempters. Eur Neuropsychopharmacol. 1996;6(3):195–199. doi: 10.1016/0924-977x(96)00020-x
- Ventorp F, Bay-richter C, Sauro A, et al. The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fl uid of suicide attempters and is associated with increased blood–brain barrier permeability. J Affect Disord. 2016;193:349–354. doi: 10.1016/j.jad.2015.12.069
- Tra L, Westrin А. Six autoantibodies associated with autoimmune encephalitis are not detectable in the cerebrospinal fluid of suicide attempters. PLoS One. 2017;12(4):e0176358. doi: 10.1371/journal.pone.0176358
- Wisłowska-Stanek A, Kołosowska K, Maciejak P. Neurobiological basis of increased risk for suicidal behaviour. Cells. 2021;10(10):2519. doi: 10.3390/cells10102519
- Matthews PR, Harrison PJ. A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord. 2012;137(1-3):125–134. doi: 10.1016/J.JAD.2011.10.043
- Steiner J, Walter M, Gos T, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94. doi: 10.1186/1742-2094-8-94
- Fullana N, Gasull-Camós J, Tarrés-Gatius M, et al. Astrocyte control of glutamatergic activity: downstream effects on serotonergic function and emotional behavior. Neuropharmacology. 2020;(166):107914. doi: 10.1016/j.neuropharm.2019.107914
- Ogyu K, Kubo K, Noda Y, et al. Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;(90):16–25. doi: 10.1016/J.NEUBIOREV.2018.03.023
- Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476. doi: 10.3389/fncel.2015.00476
- Glebov K, Löchner M, Jabs R, et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 2015;63(4):626–634. doi: 10.1002/glia.22772
- Kumari M, Anji A. Small but mighty — exosomes, novel intercellular messengers in neurodegeneration. Biology (Basel). 2022;11(3):413. doi: 10.3390/BIOLOGY11030413
- Pandey GN, Rizavi HS, Zhang H, et al. Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J Psychiatry Neurosci. 2018;43(6):376–385. doi: 10.1503/JPN.170192
- Tanti A, Lutz PE, Kim J, et al. Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology. 2019;44(12):2099–2111. doi: 10.1038/S41386-019-0471-Z
- Bani-Fatemi A, Tasmim S, Graff-Guerrero A, et al. Structural and functional alterations of the suicidal brain: an updated review of neuroimaging studies. Psychiatry Res Neuroimaging. 2018;(278):77–91. doi: 10.1016/J.PSCYCHRESNS.2018.05.008
补充文件
