PATHOLOGICAL ANATOMY OF INFECTION CAUSED BY SARS-COV-2
- 作者: Kogan E.A.1, Berezovsky Y.S.2, Protsenko D.D.1, Bagdasaryan T.R.2, Gretsov E.M.2, Demura S.A.1, Demyashkin G.A.1, Kalinin D.V.3, Kukleva A.D.1, Kurilina E.V.4, Nekrasova T.P.1, Paramonova N.B.1, Ponomarev A.B.1, Radenska-Lopovok S.G.1, Semyonova L.A.2, Tertychny A.S.1
-
隶属关系:
- I. M. Sechenov First Moscow State Medical University
- Central Tuberculosis Research Institute
- A. V. Vishnevsky National Medical Research Center
- National Medical Research Center of Cardiology
- 期: 卷 6, 编号 2 (2020)
- 页面: 8-30
- 栏目: 专业评论
- ##submission.dateSubmitted##: 01.07.2020
- ##submission.dateAccepted##: 01.07.2020
- ##submission.datePublished##: 01.07.2020
- URL: https://for-medex.ru/jour/article/view/308
- DOI: https://doi.org/10.19048/2411-8729-2020-6-2-8-30
- ID: 308
如何引用文章
全文:
详细
作者简介
E. Kogan
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0002-1107-3753
Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Natural Sciences (RANS), Head of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦Yu. Berezovsky
Central Tuberculosis Research Institute
Email: report-q@yandex.ru
ORCID iD: 0000-0001-5904-0021
Head of the Pathology Department,
Moscow
俄罗斯联邦D. Protsenko
I. M. Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: chief@medprint.ru
ORCID iD: 0000-0002-5851-2768
Cand. Sci. (Med.), Assoc. Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦T. Bagdasaryan
Central Tuberculosis Research Institute
Email: cniit@ctri.ru
ORCID iD: 0000-0001-9910-1570
Cand. Sci. (Med.), Chief Physician,
Moscow
俄罗斯联邦E. Gretsov
Central Tuberculosis Research Institute
Email: gem2505@yandex.ru
ORCID iD: 0000-0002-2337-4692
Pathologist,
Moscow
俄罗斯联邦S. Demura
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0001-9717-5496
Cand. Sci. (Med.), Assoc. Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦G. Demyashkin
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0001-8447-2600
Cand. Sci. (Med.), Assoc. Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦D. Kalinin
A. V. Vishnevsky National Medical Research Center
Email: dmitry.v.kalinin@gmail.com
ORCID iD: 0000-0001-6247-9481
Cand. Sci. (Med.), Head of the Pathology Department,
Moscow
俄罗斯联邦A. Kukleva
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0002-6690-3347
Postgraduate Student of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦E. Kurilina
National Medical Research Center of Cardiology
Email: ellakurilina@yandex.ru
ORCID iD: 0000-0002-3208-534X
Head of the Pathology Department,
Moscow
俄罗斯联邦T. Nekrasova
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0001-6376-9392
Cand. Sci. (Med.), Assoc. Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦N. Paramonova
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0001-5380-7113
Cand. Sci. (Med.), Assoc. Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦A. Ponomarev
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0002-4242-5723
Cand. Sci. (Med.), Assoc. Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦S. Radenska-Lopovok
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0002-4669-260X
Dr. Sci. (Med.), Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦L. Semyonova
Central Tuberculosis Research Institute
Email: lu.kk@yandex.ru
ORCID iD: 0000-0002-1782-7763
Cand. Sci. (Med.), Senior Researcher of the Department of Pathomorphology, Cell Biology and Biochemistry,
Moscow
俄罗斯联邦A. Tertychny
I. M. Sechenov First Moscow State Medical University
ORCID iD: 0000-0001-5635-6100
Dr. Sci. (Med.), Prof. of the A. I. Strukov Department of Pathological Anatomy,
Moscow
俄罗斯联邦参考
- World Health Organization Coronavirus disease 2019 (COVID-19) situation report—51. World Health Organization, 2020. https://www.who.int/docs/default-source/coronaviruse/situationreports/20200311-sitrep-51-covid-19.pdf?sfvrsnј1ba62e57_10
- Chan J. F., Yuan S., Kok K. H., To K. K., Chu H., Yang J., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
- Ghinai I., McPherson T. D., Hunter J. C., Kirking H. L., Christiansen D., et al. Illinois COVID-19 Investigation Team. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet. 2020;S0140-6736(20)):30607–3. https://doi.org/10.1016/S0140-6736(20)30607-3
- Zhao D., Yao F., Wang L., Zheng L., Gao Y., Ye J., et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin. Infect. Dis. 2020;ciaa247. https://doi.org/10.1093/cid/ciaa247
- Xiong Y., Sun D., Liu Y., Fan Y., Zhao L., Li X., Zhu W. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes. Investig. Radiol. 2020. https://doi.org/10.1097/RLI.0000000000000674
- Park W. B., Kwon N. J., Choi S.J., Kang C. K., Choe P. G., Kim J. Y., et al. Virus isolation from the first patient with SARS-CoV-2 in Korea. J. Korean Med. Sci. 2020;35(7):e84. https://doi.org/10.3346/jkms.2020.35.e84
- Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;180:1–12. https://doi.org/10.1016/j.cell.2020.02.058
- Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:1–10. https://doi.org/10.1016/j.cell.2020.02.052
- Finlay B. B., See R. H., Brunham R. C. Rapid response research to emerging infectious diseases: lessons from SARS. Nat. Rev. Microbiol. 2004;2(7):602–607.
- Wrapp D., Wang N., Corbett K. S., Goldsmith J. A., Hsieh C. L., Abiona O. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. https://doi.org/10.1126/science.abb2507
- Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N. G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020;176:104742. https://doi.org/10.1016/j.antiviral.2020.104742
- Perrella A., Trama U., Bernardi F. F., Russo G., Monastra L., Fragranza F., et al. Editorial — COVID-19, more than a viral pneumonia. European Review for Medical and Pharmacological Sciences. 2020;24:5183–5185.
- Aguiar D., Lobrinus J. A., Schibler M., Fracasso T., Lardi1 C. Inside the lungs of COVID-19 disease. International Journal of Legal Medicine. 2020;(134):1271–1274. https://doi.org/10.1007/s00414-020-02318-9
- Pomara C., Volti G. L., Cappello F. COVID-19 Deaths: Are We Sure It Is Pneumonia? Please, Autopsy, Autopsy, Autopsy! J. Clin. Med. 2020;9:1259. https://doi.org/10.3390/jcm9051259
- Cамсонова М. В., Михалева Л. М., Черняев А. Л., Мишнев О. Д., Крупнов Н. М. Патологическая анатомия легких при COVID-19: Атлас; под ред. О. В. Зайратьянца. М.—Рязань: Издательство ГУП РО «Рязанская областная типография», 2020.
- Katzenstein F.-L. Diagnostic atlas of non-neoplastic lung disease. A practical guide for surgical pathologist. New York, NY: Demos Medical Publishing, 2016.
- Costabel U., du Bois R. M., Egan J. J. (eds.) Diffuse Parenchymal Lung Disease. Prog. Respir. Res. 2007;36:1–10. https://doi.org/10.1159/000102577
- Wallace A.H., Simpson J., Hirani N. Spencer’s pathology of the lung. Vol. 1. Ed. Ph. Hasleton, D.B. Frieder. Acute lung injury. Cambridge: Cambridge University Press. 2013;1:342–365.
- Jain A. COVID-19 and lung pathology. Indian J. Pathol. Microbiol. 2020;63:171–172.
- Huang C., Wang Y., Li X., Ren L, Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Guzik T. J., et al. COVID-19 and the cardiovascular system implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research. 2020. https://doi.org/10.1093/cvr/cvaa106
- Xiong T. Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: acute and longterm implications. European Heart Journal. 2020;0:1–3. https://doi.org/10.1093/eurheartj/ehaa231
- Kochi A. N., Tagliari A. P., Forleo G. B., Fassini G. M., Tondo C. Cardiac and arrhythmic complications in patients with COVID‐19. J Cardiovasc Electrophysiol. 2020;31:1003–1008. https://doi.org/10.1111/jce.14479
- Manish Bansal. Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14:247–250. https://doi.org/10.1016/j.dsx.2020.03.013
- Mahmud E., Dauerman H. L., Welt F. G., Messenger J. C., Rao S. V., Grines C., et al. Management of Acute Myocardial Infarction During the COVID-19 Pandemic. Journal of the American College of Cardiology. 2020. https://doi.org/10.1016/j.jacc.2020.04.039
- Zheng Y.-Y., Yi M.-T., Zhang J. -Y., Xie X. COVID-19 and the cardiovascular system. Nature reviews. 2020;17:259–260. 27. Thygesen K., Alpert J. S., Jaffe A.S., Chaitman B. R., Bax J. J., Morrow D. A., et al. ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40(3):237–269. https://doi.org/10.1093/eurheartj/ehy462
- Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E., et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. Journal of the American College of Cardiology. 2020. https://doi.org/10.1016/j.jacc.2020.04.031
- Long B., Brady W. J., Koyfman A., et al. Cardiovascular complications in COVID-19. American Journal of Emergency Medicine. https://doi.org/10.1016/j.ajem.2020.04.048
- Craver R., Huber S., Sandomirsky M., McKenna D., Schieffelin J., Finger L. Fatal Eosinophilic Myocarditis in a Healthy 17-Year-Old Male with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2c). =Fetal Pediatr. Pathol. 2020:1–6. https://doi.org/10.1080/15513815.2020.1761491. [Epub ahead of print].
- Sala S., Peretto G., Gramegna M., Palmisano A., Villatore A., Vignale D., et al. Acute Myocarditis Presenting as a Reverse Tako-Tsubo Syndrome in a Patient With SARS-CoV-2 Respiratory Infection. Eur. Heart J. 2020;41(19):1861–1862. https://doi.org/10.1093/eurheartj/ehaa286
- Liu P. P., Blet A., Smyth D., Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation. 2020 Apr 15. https://doi.org/10.1161/CIRCULATIONAHA.120.047549. [Epub ahead of print].
- Arentz M., Yim E., Klaff L., et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 [Epub ahead of print]. 34. Chen T., Wu D., Chen H., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. Mar 26 2020;368:m1091.
- Das G., Mukherjee N., Ghosh S. Neurological Insights of COVID-19 Pandemic. ACS Chem Neurosci. 2020;11(9):1206–1209. https://doi.org/10.1021/acschemneuro.0c00201
- Naicker S., Yang C.-W., Hwang S.-J., Liu B.-C., Chen J.-H., Jha V. The novel coronavirus 2019 epidemic and kidneys. Kidney Int. 2020;97:824–828. https://doi.org/10.1016/j.kint.2020.03.001
- Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8:475–481. https://doi.org/10.1016/S2213-2600(20)30079-5
- Aragão D.S., Cunha T.S., Arita D.Y., Andrade M.C.C., Fernandes A.B., Watanabe I.K.M., et al. Purification and characterization of angiotensin converting enzyme 2 (ACE2) from murine model of mesangial cell in culture. Int. J. Biol. Macromol. 2011;49:79–84. https://doi.org/10.1016/j.ijbiomac.2011.03.018
- Hamming I., Timens W., Bulthuis M. L. C., Lely A. T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637. https://doi.org/10.1002/path.1570
- Li N., Zimpelmann J., Cheng K., Wilkins J.A., Burns K. D. The role of angiotensin converting enzyme 2 in the generation of angiotensin 1_7 by rat proximal tubules. Am. J. Physiol. Renal. Physiol. 2005;288:F353–F362. https://doi.org/10.1152/ajprenal.00144.2004
- Ye M., Wysocki J., William J., Soler M. J., Cokic I., Batlle D. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J. Am. Soc. Nephrol. 2006;17:3067–3075. https://doi.org/10.1681/ASN.2006050423
- Liu H., Jiang Y., Li M., Yu X., Sui D., Fu L. Ginsenoside Rg3 attenuates angiotensin II-mediated renal injury in rats and mice by upregulating angiotensin-converting enzyme 2 in the renal tissue. Evid. Based Complement. Alternat Med. 2019;6741057. https://doi.org/10.1155/2019/6741057
- Mizuiri S., Ohashi Y. ACE and ACE2 in kidney disease. World J. Nephrol. 2015;4:74–82. https://doi.org/10.5527/wjn.v4.i1.74
- Sharma N., Malek V., Mulay S. R., Gaikwad A. B. Angiotensin II type 2 receptor and angiotensin-converting enzyme 2 mediate ischemic renal injury in diabetic and non-diabetic rats. Life Sci. 2019;235:116796. https://doi.org/10.1016/j.lfs.2019.116796
- Oudit G. Y., Herzenberg A. M., Kassiri Z., Wong D., Reich H., Khokha R., et al. Loss of angiotensin-conver ting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am. J. Pathol. 2006;168:1808–1820. https://doi.org/10.2353/ajpath.2006.051091
- Jessup J. A., Gallagher P. E., Averill D. B., Brosnihan K. B., Tallant E. A., Chappell M. C., Ferrario C. M. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H2166–H2172. https://doi.org/10.1152/ajpheart.00061.2006
- van de Veerdonk F., Netea M. G., van Deuren M., van der Meer J. W., de Mast Q., Bruggemann R. J., van der Hoeven H. Kinins and Cytokines in COVID-19: A Comprehensive Pathophysiological Approach. Preprints. 2020:2020040023. https://doi.org/10.20944/preprints202004.0023.v1
- Cheng H., Wang, Y., & Wang, G. Q. Organ‐protective Effect of Angiotensin‐converting Enzyme 2 and its Effect on the Prognosis of COVID‐19. Journal of Medical Virology. 2020. PMID: 32221983. https://doi.org/10.1002/jmv.25785
- Diao B., Feng Z., Wang C., Wang H., Liu L., Wang C., et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Preprint. medRxiv: 2020.03.04:20031120. https://doi.org/10.1101/2020.03.04.20031120
- Perico L., Benigni A., Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron. In press. https://doi.org/10.1159/000507305
- Su H., Yang M., Wan C., Yi L. X., Tang F., Zhu H. Y., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. In press. https://doi.org/10.1016/j.kint.2020.04.003
- D’Agati V. D., Kaskel F. J., Falk R. J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 2011;365:2398–2411.
- Shkreli M., Sarin K. Y., Pech M. F., et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med. 2011;18:111–119.
- Larsen C. P., Bourne T. D., Wilson J. D., et al. Collapsing Glomerulopathy in a Patient With Coronavirus Disease 2019 (COVID-19). Kidney Int Rep. 2020. 55. Peleg Y., Kudose S., D’Agati V., et al. Acute Kidney Injury Due to Collapsing Glomerulopathy Following COVID-19 Infection. Kidney Int Rep. 2020.
- Kissling S., Rotman S., Gerber C., et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020.
- Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829–838. https://doi.org/10.1016/j.kint.2020. 03.005.
- Nasr S. H., Kopp J. B. COVID-19-Associated Collapsing Glomerulopathy. Kidney Int. Rep. 2020;5:759–761. https://doi.org/10.1016/j.ekir.2020.04.030
- Hirsch J. S., Ng J. H., Ross D. W., Sharma P., Shah H. H., Barnett R. L., et al. Northwell COVID-19 Research Consortium; Northwell Nephrology COVID-19 Research Consortium. Acute kidney injury in patients hospitalized with COVID-19, Kidney Int. 2020 May 16;S0085–2538(20):30532–30539. https://doi.org/10.1016/j.kint.2020.05.006 Online ahead of print. Kidney Int. 2020. PMID: 32416116
- Post A., den Deurwaarder E. S. G., Bakker S. J. L., de Haas R. J., van Meurs M., Gansevoort R. T., Berger S. P. Kidney Infarction in Patients With COVID-19 American Journal of Kidney Diseases. 2020. https://doi.org/10.1053/j.ajkd.2020.05.004
- Zhang C., Shi L., Wang F.-S. Liver injury in COVID-19: management and challenges. www.thelancet.com/gastrohep Vol 5 May 2020, Published Online March 4, 2020. https://doi.org/10.1016/S2468-1253(20)30057-1
- Ye Z., Song B. COVID-19 related liver injury: call for international consensus. Clinical Gastroenterology and Hepatology. 2020. https://doi.org/10.1016/j.cgh.2020.05.013
- Zheng K.I., Gao F., Wang X.-B., Sun Q.-F., Pan K.-H., Wang T.-Y., et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism Clinical and Experimental. 2020. https://doi.org/10.1016/j.metabol.2020.154244
- Jinyang Gu, Bing Han, Jian Wang, COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology. 2020;158:1518–1519. https://doi.org/10.1053/j.gastro.2020.02.054
- Wang Y., Liu S., Liu H., Li W., Lin F., Jiang L., et al. SARSCoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. Journal of Hepatology. 2020. https://doi.org/10.1016/j.jhep.2020.05.002
- Tian Y., Rong L., Nian W., He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Alimentary Pharmacology and Therapeutics. 2020;51(9):843–851. https://doi.org/10.1111/apt.15731
- Xiao F., Tang M., Zheng X., Liu Y., Li X., & Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831–1833.e3. https://doi.org/10.1053/j.gastro.2020.02.055
- Bezzio C., Saibeni S., Variola A., Allocca M., Massari A., Gerardi V., et al. Outcomes of COVID-19 in 79 patients with IBD in Italy: An IG-IBD study. Gut. 2020:1213–1217. https://doi.org/10.1136/gutjnl-2020-321411
- Pal R., Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J. Endocrinol. Invest. 2020. https://doi.org/10.1007/s40618-020-01276-8
- Liu F., Long X., Zou W., Fang M., Wu W., Li W., et al. Highly ACE2 expression in pancreas may cause pancreas damage after SARS-CoV-2 infection [Internet] [cited 2020 Apr 1].
- Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., et al. Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 2004;203:622–630. https://doi.org/10.1002/path.1560
- Yang J. K., Feng Y., Yuan M. Y., Yuan S. Y., Fu H. J., Wu B. Y., et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23:623–628. https://doi.org/10.1111/j.1464-5491.2006.01861
- Yang J.-K., Lin S.-S., Ji X.-J., Guo L.-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47:193–199. https://doi.org/10.1007/s00592-009-0109-4.x
- Jaeckel E., Manns M., Herrath M. Viruses and diabetes. Ann. N. Y. Acad. Sci. 2006;958:7–25. https://doi.org/10.1111/j.1749-6632.2002.tb02943.x
- Wheatland R. Molecular mimicry of ACTH in SARS — implications for corticosteroid treatment and prophylaxis. Med. Hypotheses. 2004;63:855–862. https://doi.org/10.1016/j.mehy.2004.04.009
- Xu J., Zhao S., Teng T., Abdalla A.E., Zhu W., Xie L., et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARSCoV. Viruses. 2020;12:244. https://doi.org/10.3390/v12020244
- Isidori A. M., Arnaldi G., Boscaro M., Falorni A., Giordano C., Giordano R., et al. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J. Endocrinol. Invest. 2020. https://doi.org/10.1007/s40618-020-01266-w
- Scaroni C., Armigliato M., Cannavò S. COVID-19 outbreak and steroids administration: are patients treated for Sars-Cov-2 at risk of adrenal insufficiency? J. Endocrinol. Invest. 2020. https://doi.org/10.1007/s40618-020-01253-1
- Porfidia A., Pola R., Porfidia A., et al. Venous thromboembolism in COVID-19 patients. J. Throm. Haemost. 2020. https://doi.org/10.1111//jth.14842
- Wei L., Sun S., Xu C., Zhang J., Xu Y., Zhu H., et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 2007;38:95–102. https://doi.org/10.1016/j.humpath.2006.06.011.
- Wei L., Sun S., Xu C., Zhang J., Xu Y., Zhu H., et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 2007;38:95–102. https://doi.org/10.1016/j.humpath.2006.06.011
- Desaillud R., Hober D. Virus and thyroiditis: an update. Virol. J. 2009;6:5. https://doi.org/10.1186/1743-422X-6-5
- Bellastella G., Maiorino M. I., Esposito K. Endocrine complications of COVID-19: what happens to the thyroid and adrenal glands? Endocrinol. Invest. 2020. https://doi.org/10.1007/s40618-020-01311-8
- Liang Y., Wang M.-L., Chien C.-S., Yarmishyn A. A., Yang Y.-P., Lai W.-Y., et al. Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Front. Immunol. 2020;11:1022.
- Lega S., Naviglio S., Volpi S., Tommasini A. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines. 2020;8:224–254. https://doi.org/10.3390/vaccines8020224
- Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol. 2020;17:533–5. https://doi.org/10.1038/s41423-020-0402-2
- Zeng Q., Li Y., Huang G., Wu W., Dong S., Xu Y. Mortality of COVID-19 is associated with cellular immune function compared to immune function in Chinese Han population. Medrxiv. 2020. https://doi.org/10.1101/2020.03.08.20031229
- Zheng J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci. 2020;16:1678–1685. [CrossRef]
- Wang X., Xu W., Hu G., Xia S., Sun Z., Liu Z., et al. SARSCoV-2 infects T lymphocytes through its spike proteinmediated membrane fusion. Cell Mol. Immunol. 2020;1–3. https://doi.org/10.1038/s41423-020-0424-9
- Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia inWuhan, China: A descriptive study. Lancet. 2020;395:507–513. [CrossRef]
- Wang D., Hu B., Hu, C., Zhu F., Liu X., Zhang J., et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. [CrossRef]
- Wang X., Xu W., Hu G., Xia S., Sun Z., Liu Z., et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell. Mol. Immunol. 2020;1–3. [CrossRef]
- Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J. Eur. Acad. Dermatol. Venereol. 2020. http://dx.doi.org/10.1111/jdv.16387 [Epub ahead of print].
- Sachdeva M., Gianottibc R., Shhaha M., Lucia B., Tosi D., Veraldic S., et al. Cutaneous manifestations of COVID-19: Report of three cases and a review of literature. J. Dermatol. Sci. 2020). https://doi.org/10.1016/j. jdermsci.2020.04.011
- Gianotti R. COVID 19 and the skin-heuristic review, Dermo Sprint. 2020. April 06. In press.
- Manalo I. F., Smith M. K., Cheeley J., Jacobs R. A dermatologic manifestation of COVID-19: transient livedo reticularis. J. Am. Acad. Dermatol. 2020. http://dx.doi.org/10.1016/j.jaad.2020.04.018 [Epub ahead of print].
- Magro C., Mulvey J., Berlin D., Nuovo G., Salvatore S., Harp J., et al. Complementary associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases, Transl. Res. 2020. In press.
- Ayala E., Kagawa F. T., Wehner J. H., Tam J., Upadhyay D. Rhabdomyolysis associated with 2009 influenza A(H1N1). JAMA. 2009;302:1863–1864. https://doi.org/10.1001/jama.2009.1582
- Jin Min & Tong Qiaoxia. Rhabdomyolysis as Potential Late Complication Associated with COVID-19. Emerging infectious diseases. 2020. https://doi.org/10.3201/eid2607.200445
- Lahiri D., Ardila A. COVID-19 Pandemic: A Neurological Perspective. Cureus. 2020;12(4):e7889. https://doi.org/10.7759/cureus.7889
- Xu J., Qi L., Chi X. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 2006;74:410– 416. [PMC free article] [PubMed] [Google Scholar]
- Ding Y., He L., Zhang Q. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 2004;203:622–630. [PMC free article] [PubMed] [Google Scholar]
- Fan C., Li K., Ding Y., Lu W., Wang JACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. medRxiv. 2020.
- Shen Q., Xiao X., Aierken A., Liao M., Hua J. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. medRxiv. 2020
- Song C., Wang Y., Li W., Hu B., Chen G., Xia P., et al. https://doi.org/10.1101/2020.03.31.20042333
- Li R., Yin T., Fang F., Li Q., Chen J., Wang Y., et al. Potential risks of SARS-CoV-2 infection on reproductive health. ReproductiveBioMedicine. 2020 (Onlinehttps:// doi.org/). https://doi.org/10.1016/j.rbmo.2020.04.018
- di Mascio D., Khalil A., Saccone G., Nappi L., Scambia G., Berghella V., D’Antonio F. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1–19) during pregnancy: a systematic review and meta-analysis. [Published online ahead of print, 2020 Mar 25]. American Journal of Obstetrics and Gynecology. MFM. 2020;100107. https://doi.org/10.1016/j.ajogmf.2020.100107
- Schwartz D. A., Graham A. L. Potential maternal and infant outcomes from Coronavirus 2019-nCoV (SARSCoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections. Viruses. 2020;12(2):194. https://doi.org/10.3390/v12020194
- Ferrazzi E. M., Frigerio L., Cetin I., Vergani P., Spinillo A., Prefumo F., et al. COVID-19 Obstetrics Task Force, Lombardy, Italy: executive management summary and short report of outcome. International Journal of Gynecology and Obstetrics. 2020. [Published online ahead of print, 2020 Apr 8]. https://doi.org/10.1002/ijgo.13162
- Conaldi P. G., et al. Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells. J. Virol. 1997;71(12):9180–9187.
- Nowakowski T. J., et al. Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell Stem. Cell. 2016;18(5):591–596.
- Jayawardena N., et al. Virus-Receptor Interactions: Structural Insights for Oncolytic Virus Development. Oncolytic Virother. 2019;8:39–56.
- CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children — United States, February 12 — April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:422.
- Dong Y., Mo X., Hu Y., et al. Epidemiology of COVID-19 among Children in China. Pediatrics 2020; 145.
- Zimmermann P., Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J. 2020;39:355.
- McCrindle B. W., Rowley A. H., Newburger J. W., et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–e999. https://doi.org/10.1161/CIR.0000000000000484