Bone regeneration of patients with osteoporosis takes significantly longer than the rehabilitation period of individuals without bone pathology. This is due to the predominance of destructive processes in the setting of osteoblastic reaction weakened by osteoporosis, persistent inflammatory reactions, as well as proliferating connective tissue.

Aim. Тo study the nature and dynamics of processes involved in the destruction and regeneration of bone tissue under various conditions, taking forensic medical assessment into account.

Material and methods. We studied the autopsy and biopsy material of bone tissue using clinical-instrumental and histological research methods.

Results. Using atomic force microscopy, it was found that in individuals with osteoporosis the formation of endosteal callus exhibits features associated with the impaired interlacing of collagen fibres due to the expanded space between them, and, as a result, an impaired connection between osseous structures with a low level of mineralisation.

Conclusion. In accordance with paragraph 24 of Order 194n On the Approval of Medical Criteria for Determining the Severity of Harm to Human Health verified systemic osteoporosis that was the setting for the fracture, which in fact is a pathological fracture, should not be considered as damage to health.

About the authors

V. P. Konev

Omsk State Medical University

Author for correspondence.

Vladimir P. Konev, Dr. Sci. (Med.), Prof., Departmental Head, Department of Forensic Medicine and Legal Studies

SPIN-код: 9195-0420, AuthorID: 349447

Russian Federation

S. N. Moskovskiy

Omsk State Medical University


Sergey N. Moskovskiy, Cand. Sci. (Med.), Assoc. Prof., Department of Forensic Medicine and Legal Studies

SPIN-код: 1180-1435, AuthorID: 645116

Russian Federation

A. E. Krivoshein

Omsk State Medical University


Artem E. Krivoshein, Cand. Sci. (Med.), Assoc. Prof., Department of Traumatology and Orthopedics

SPIN-код: 4331-2422, AuthorID: 813568

Russian Federation

Yu. O. Shishkina

Omsk State Medical University


Yuliya O. Shishkina, Research Assistant, Department of Forensic Medicine and Legal Studies

SPIN-код: 9694-6875, AuthorID: 988575

Russian Federation

A. S. Korshunov

Omsk State Medical University


Andrey S. Korshunov, Research Assistant, Department of Maxillofacial Surgery

SPIN-код: 1111-1502, AuthorID: 928078

Russian Federation

V. V. Goloshubina

Omsk State Medical University


Viktoria V. Goloshubina, Cand. Sci. (Med.), Assoc. Prof., Department of Outpatient Therapy and Internal Diseases

SPIN-код: 8047-1506, AuthorID: 779844

Russian Federation

V. V. Sorokina

Omsk State Medical University


Veronika V. Sorokina, Cand. Sci. (Med.), Assoc. Prof., Department of Forensic Medicine and Legal Studies

SPIN-код: 3171-4160, AuthorID: 441176

Russian Federation


  1. Аврунин А. С., Корнилов Н. В., Иоффе И. Д. Адаптационные механизмы костной ткани и регуляторно-метаболический профиль организма. Морфология. 2001;120(6):7–12.
  2. Камилов Ф. Х., Фаршатова Е. Р., Еникеев Д. А. Клеточно-молекулярные механизмы ремоделирования костной ткани и ее регуляция. Фундаментальные исследования. 2014;7–4:836–842.
  3. Конев В. П., Коршунов А. С., Московский С. Н., Шестель И. Л., Серов Д. О., Шишкина Ю. О. и др. Исследование минерального компонента и органического матрикса костной ткани с использованием метода атомно-силовой микроскопии. Практическая медицина. 2018;1(112):168–171.
  4. Конев В. П., Московский С. Н., Коршунов А. С., Шестель И. Л., Голошубина В. В. Алгоритмы использования современных подходов при микроскопичес ком исследовании для судебно-медицинских целей.Вестник судебной медицины. 2018;7(1):50–55.
  5. Кузнецова Т. Г. Наноструктурная организация минерального матрикса костной ткани. Проблемы здоровья и экологии. 2008;2(8):107–112.
  6. Kallai I., Mizrahi O., Tawackoli W., Gazit Z., Pelled G., Gazit D. Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc. 2011;6(1):105–110.
  7. Roschger P., Gupta H. S., Berzanovich A., Ittner G., Dempster D. W., Fratzl P., et al. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32(3):16–23.
  8. Tong W., Glimcher M. J., Katz J. L., Kuhn L., Eppell S. J. Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int. 2003;75(59):2–8.
  9. Suvorova E. I., Petrenko P. P., Buffat P. A. Scanning and Transmission Electron Microscopy for Evaluation of Order/Disorder in Bone Structure. Scanning. 2007;29:162–170.
  10. Hassenkam T., Fantner G., Cutroni J. A., Weaver C., Hansma P. K. High-resolution AFM imaging of intact and fractured trabecular bone. Bone. 2004;35(1):4–10.
  11. Kuangshin T., Hang J. Q., Ortis C. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Materials science: Materials in medicine. 2005;16(8):1–12.
  12. Su X., Sun K., Cui F. Z., Landis W. J. Organization of apatite crystals in human woven bone. Bone. 2003;32(2):150–162.



Abstract: 814

PDF (Russian): 312


CrossRef: 1

  1. Krivoshein AY, Konev VP, Kolesov SV, Moskovsky SN. COMPARATIVE ANALYSIS OF RADIOLOGIC ASPECTS OF FACET JOINTS IN SURGICAL TREATMENT OF PATIENTS WITH DEGENERATIVE DISEASES OF THE LUMBAR SPINE. Innovative Medicine of Kuban. 2021;(1):14. doi: 10.35401/2500-0268-2021-21-1-14-20

Article Metrics

Metrics Loading ...




  • There are currently no refbacks.

Copyright (c) 2020 Konev V.P., Moskovskiy S.N., Krivoshein A.E., Shishkina Y.O., Korshunov A.S., Goloshubina V.V., Sorokina V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies