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ABSTRACT

The article reviews the perspectives of spectroscopy in forensic practice. Spectroscopy is a pivotal analytical tool
for the investigation of biological physical evidence. The primary focus of this study is on two major methods: Fourier
transform infrared spectroscopy and Raman spectroscopy. Fourier transform infrared spectroscopy is based on the absorption
and transmission of infrared radiation by the sample. This approach can be used to determine the molecular composition
and chemical bonds in the sample. In contrast, Raman spectroscopy uses laser light scattering to analyze the molecular
structure and chemical composition of samples. Both methods are highly precise, fast, and non-destructive, making them
vital in forensic medicine. Successful applications of spectroscopy in forensic practice include the identification of various
biological fluids such as blood, semen, and saliva. Consequently, Fourier infrared spectroscopy can differentiate between blood
types, including peripheral and menstrual, detect specific molecules and determine their concentrations. Meanwhile, Raman
spectroscopy has been successfully used to identify the blood of an adult and a newborn. The integration of spectroscopic
methods with chemometric approaches and machine learning algorithms is a promising area. This integration facilitates
the processing of large amounts of spectra, improves the analytical accuracy, and enables the identification of the test sample.
These approaches have been shown to provide more accurate and reliable identification of causes of death and physical
evidence.

Consequently, the advanced spectroscopic methods offer fast, accurate and reliable tools for forensic examinations. These
methods contribute to the advancement of interdisciplinary teamwork and the introduction of the latest technologies
into practice, which leads to the improvement of the quality of forensic examinations and the solution of practical challenges.
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AHHOTALLUA

B cTatbe obcyxpalTca nepcnekTMBbl MCMOMb30BaHMA CMEKTPOCKONUK B CyAeBHO-MeaMLMHCKON npakTuke. CneKTpocKonus
CITY)KUT BaXKHbIM aHaNUTUYECKUM MHCTPYMEHTOM AJ1S1 UCCNeA0BaHNA BeLLeCTBEHHbIX A0Ka3aTeNbCTB B1onorMyeckoro npoumc-
xoxaeHns. OCHOBHOe BHUMaHWe YLeNeHo 1BYM 0CHOBHbIM MeTofiaM: MHdpakpacHon Qypbe-CcneKTPOoCKONUM 1 paMaHOBCKOM
cnektpockonuu. VHdpakpacHas Qypbe-cneKTpocKonus xapakTepusyeTcs BO3AEHCTBUEM UHPPAKPACHOro U3MyyeHus Ha 06-
paseLl C NocnefyloLLMM aHann3oM CMeKTpa NormoLeHUA UK NPOXOXKAEHNUA cBeTa. 3TOT MeTo/, N03BONAET ONpPefensTb Mo-
NeKyNApPHBbIA COCTaB U XMMUYECKWe CBA3W B UCCieyeMoM MaTepuane. PaMaHOBCKas CeKTPOCKONMSA, HanpoTWB, UCMOoNb3yeT
na3sepHoe paccesiHue CBeTA ANA aHann3a MONEKyNAPHOI CTPYKTYpbI U XMMMYecKoro coctaBa obpasuos. 06a Metosa obnapatot
BbICOKOW TOYHOCTbHO, CKOPOCTLIO M BO3MOMHOCTbIO MPOBEAEHUA HepaspyLLAlOLLEro aHanmuaa, Yto Aenaet ux He3saMeHUMbIMM
B cynebHoi MeanumHe. puMepbl YCrewWwHOro NPUMEHeHNs CNEKTPOCKONUN B Cye6HOI NPaKTUKe BKIKYAKT WAEHTUDUKA-
LMI0 Pa3fIMuHbIX BUONOMMYECKMX KMAKOCTEN, TaKUX KaK KpoBb, CriepMa U cniloHa. Tak, uHdpakpacHas Pypbe-cneKTpockonus
N03BONIAET pa3nuyaTh TUMbI KPOBM, BKITKOYaA nepudepuyeckyo N MEHCTPYasbHYIO, @ TaKKe OnpefenaTb HanlumMe N KOHLEH-
TPaLuio onpeaenéHHbIX Moniekyn. B cBolo ouepesib, paMaHOBCKYI0 CMEKTPOCKOMMIO YCMELLHO NPUMEHSAIOT ANA MAeHTUdUKa-
LM KPOBM B3POC/IOr0 YeNoBeKa U HOBOPOXAEHHOr0. BaxHoe MecTo 3aHMMaeT MHTerpaumus CeKTPOCKOMMYECKUX METOA0B
C XeMOMETPUYECKUMW NOAX04aMU U anropuTMaMmn MaluMHHOro obydeHus. 3To nossonsieT obpabatbiBaTh BosblMe 06BEMBI
CMEKTpasbHbIX AaHHBIX, YyyLlaTh TOYHOCTb aHanu3a 1 uaeHTUdULMpOBaTL ccnedyeMble 0bpasLbl. Takue noaxoasl obecne-
ynBaloT 6onee TOUHOE U HAJEXHOE YCTAHOBMIEHWE NPUYUH CMEPTU U MAEHTU(UKALMIO BELLECTBEHHBIX JOKa3aTeNbCTB.
Takum 06pa3oM, coBpeMeHHble CMEKTPOCKOMWYeCKWe MeTodbl npeaaraloT bbiCTpble, TOYHbIE U HAZEXHbBIE UHCTPYMEHTbI
AnA cynebHo-MeaMLMHCKON 3KenepTu3bl. OHKU CNOCOBCTBYIOT Pa3BUTUID MEXAMCLMNAMHAPHOTO COTPYAHNYECTBA M BHeApe-
HMI0 HOBEMLLMX TEXHOJOTUIA B MPAKTUKY, 4TO BEAET K NOBILLEHMI0 KayecTBa CyAebHO-MeAULMHCKUX IKCMEPTU3 U paspeLue-
HWIO CNOXKHBIX NPaKTUYecKuX 3apad.

Kniouesble cnoBa: cnextpockonus; cyaebHas MeauumHa; (Oypbe-CNeKTpoCKONWS; pamMaHOBCKas CMeKTpoCKomus;
BELLECTBEHHbIE J0Ka3aTeNbCTBa; aHaau3; NpUdMHa CMepTy; 0630p.
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INTRODUCTION

Forensic medicine is a multidisciplinary field that combines
various concepts and subject areas to reach comprehensive
conclusions and support criminal investigations [1]. A careful
examination of biological evidence, corpses, images,
and other materials may reveal important details, such
as the cause of death or the mechanism of injury. This helps
ensure fair and accurate judicial decisions.

The development of new technologies has improved
our ability to link objects found at a crime scene to specific
individuals, which significantly increases the effectiveness
of investigations [2-5]. In most cases, biological evidence,
such as body fluids or tissues, is found at the scene
of the crime [6-8]. These biological materials may be
degraded or mixed with other substances, which makes
it difficult to detect and identify them [9].

In forensic practice, it is crucial to use quantitative analysis
and statistical significance parameters to obtain objective
and accurate results. Therefore, special focus should be
given to techniques such as Fourier transform infrared (FTIR)
spectroscopy and Raman spectroscopy. These techniques
efficiently detect proteins and nucleic acids, making them
effective tools for addressing forensic issues [10, 11].

PRINCIPLE OF FOURIER TRANSFORM
INFRARED SPECTROSCOPY

In FTIR spectroscopy, a sample is exposed to infrared
radiation, and a resulting absorbance spectrum is processed
using Fourier transform-based techniques. This process
reliably identifies the chemical bonds and functional groups
in the sample. Light beams of different frequencies are
directed into an interferometer to collect high-resolution
spectral data across a broad frequency range [12]. Data are
extracted through the quantitative measurement of light
absorbance. As the mirrors move inside the interferometer,
light of various wavelengths is periodically blocked or
transmitted. The result is an interferogram. The Fourier
transform converts the original data obtained for the sample
into an absorbance spectrum, which represents light
absorbance at different wavelengths [12].

FTIR spectroscopy is based on the interaction
between chemical substances and infrared light. The atoms
within molecules are in constant motion and vibration. These
vibrations are either symmetric or antisymmetric depending
on whether the molecules are stretched, deformed, or
bent. The vibrations occur at frequencies associated
with the chemical bonds and properties of compounds,
corresponding to the near-infrared spectrum [13]. Therefore,
FTIR spectroscopy can accurately determine the molecular
composition of a sample and identify possible abnormal
changes, providing valuable diagnostic information [14].
For example, Mader et al. [15] used multidimensional FTIR
spectroscopy to evaluate intervertebral disc degeneration.

Vol 17.(1) 2025

D0l https://doiorg/10.17816/fm16227

Russian Journal of Forensic Medicine

FTIR spectroscopy is a widely used technique that is often
combined with attenuated total reflectance (ATR) to form
ATR-FTIR. This combination significantly simplifies the testing
procedure and improves the test sensitivity [16]. Therefore,
infrared spectroscopy is widely represented in forensic
practice. This technique provides a deeper understanding
of the composition and properties of test samples,
such as skeletal remains, vehicle paintwork, and soil
composition [17-19].

PRINCIPLE OF RAMAN SPECTROSCOPY

Raman spectroscopy is an analytical technique that
uses the interaction of light with a sample and the changes
in the charge distribution of the sample's molecules
under laser radiation [20]. This interaction results
in an exchange of energy and momentum, which is expressed
as Rayleigh and Raman scattering. In most cases, light
interacts with molecules in a way that only changes
its direction without altering its energy. This is called elastic
or Rayleigh scattering. However, when a molecule absorbs
energy from incident light, it starts to vibrate, resulting
in a difference in energy between the scattered and incident
light. This process is called inelastic or Raman scattering [21].

Changes in laser energy are associated with collisions
with different molecules in the sample, leading to transfer
of varying amounts of energy. As a result, each molecule
demonstrates unique characteristics that appear as peaks
in the Raman spectrum. Raman spectroscopy collects
inelastic scattered tissue-specific light, creating a molecular
fingerprint of that tissue [22]. This technique is used
for the qualitative and quantitative analysis of samples. By
evaluating a sample's structure, composition, and chemical
bonds, it accurately characterizes the vibrations of specific
chemical molecules [23].

In practice, Raman spectroscopy can be combined
with other techniques to provide the following:

« Surface-enhanced Raman spectroscopy
« Stepwise Raman spectroscopy
« Micro-Raman spectroscopy

Fiber Raman spectroscopy is shown to rapidly and accurately
diagnose muscle diseases in humans [22, 24, 25]. In addition,
the numerous advantages of Raman spectroscopy have led
to its widespread use in forensic medicine, providing valuable
data for analytical tests and investigations [26, 27].

FTIR and Raman spectroscopy are considered the primary
techniques used to evaluate molecular vibration modes.
FTIR spectroscopy evaluates changes in molecular dipole
moments, whereas Raman spectroscopy evaluates changes
in polarizability [28]. Both techniques are significant tools
for non-destructive measurements, offering a wide spectral
range, ease of operation, and minimal sample preparation
requirements [29-32].

Biological material is carefully selected and fixed
to prevent destruction and contamination. Handheld devices,
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such as handheld FTIR and micro-Raman spectrometers,
allow analysis to be performed directly at the scene.
Stationary devices, including laboratory FTIR and surface-
enhanced Raman spectrometers, provide more detailed
analysis in a laboratory setting [22, 24, 25].

A non-destructive analytical technique is based
on heating without combustion. The heating temperature
is typically approximately 50-60°C, which is sufficient
to activate the processes without causing denaturation of most
proteins [29-32]. There is a risk of denaturation, but it is minimal
as long as the required temperature conditions are met.

Therefore, the proper technical equipment should be
used and strict protocols for preparing and evaluating
biological materials should be followed to minimize the risk
of damaging samples and losing valuable data that could be
used in future investigations.

CHEMOMETRICS

Chemometrics is a powerful experimental data-
based analytical tool used in chemistry to extract valuable
information from measurement results by leveraging
mathematical and statistical methods. Chemometrics
involves processing of data in matrix form to identify
potential relationships between variables, thereby simplifying
the analysis of the multivariate characteristics in forensic
investigations [33]. The widely used MATLAB, as well
as Python and R programming languages, provide efficient
and accurate chemometric analysis.

Preprocessing is usually required to prepare spectral
measurement data for classification or calibration.
This process can significantly improve and systematize
the obtained results. In addition, preprocessing can effectively
eliminate or minimize noise and interference in the spectrum,
improving the predictive performance of the model [34, 35].
Common spectral preprocessing techniques commonly
include smoothing, baseline correction, and scatter
correction [36]. These techniques produce more accurate
and reliable analytical results, which are crucial to effectively
use chemometrics in forensic medicine.

Chemometric models can be supervised and unsupervised.
Unsupervised models are built without predefined labels
and are intended for research purposes. They identify data
trends, group the similar data points together, and separate
different data sets. Clustering is a key method for identifying
hidden structures in a dataset. The most widely used
clustering techniques include hierarchical clustering,
K-means clustering, and principal component analysis (PCA).
Supervised models are trained using human-labeled input
data and grouped data. They are used to categorize new
samples based on known patterns. Common supervised
learning techniques include partial least squares discriminant
analysis (PLS-DA), linear discriminant analysis, and support
vector machines. These techniques extract valuable features
and achieve high classification accuracy [37].
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Stoichiometry establishes a statistical basis for spectral
analysis, allowing for the comparison of a sample's spectrum
to a standard chemometric model [21]. Many studies highlight
that the synergetic use of Raman and FTIR spectroscopy
in  combination with chemometric techniques can
significantly improve the accuracy and reliability of forensic
conclusions [38-41].

Biological Evidence

Locard's exchange principle states that when a person
comes into contact with an object or another person, a cross-
transfer of physical evidence occurs [42]. This statement
emphasizes the importance of identifying biological
evidence at the crime scene to draw initial conclusions
about the suspect's phenotype. The effective identification
and recovery of relevant physical evidence is crucial
for generating information that will help reduce the pool
of potential suspects. These techniques facilitate investigative
activities. Forensic investigations often rely on biological fluids
as a primary source of evidence because these substances
are commonly found at crime scenes. Their analysis is key
to determining various features and significantly contributes
to reconstructing events [43]. However, many analytical
techniques are destructive, and available samples are
limited. Therefore, non-destructive sampling is necessary
for accurate and efficient identification during investigations.
Spectroscopy-based identification techniques are considered
the optimal solution for evaluating biological evidence. Raman
and FTIR spectroscopy are becoming more common in this
approach because of their high sensitivity. These techniques
identify and preserve samples for future testing.

Blood Stains

Blood is the most common biological fluid found
at violent crime scenes, so many studies aim to find
the optimal method for detecting it. For example, Sharma et
al. [44] conducted a comprehensive analysis using
ATR-FTIR spectroscopy. Their study included 50 samples
of venous blood from healthy individuals, 30 samples
of menstrual blood, 30 samples of semen and vaginal
fluid, and various non-biological substances that can mimic
blood and produce false-positive results. A blood stain was
applied to the surface of a crystal used for ATR spectroscopy.
The combined use of chemometric techniques, such as PCA
and linear discriminant analysis, classified blood and other
body fluids, as well as blood-like non-biological substances
with the 100% accuracy. Moreover, ATR-FTIR was shown
to reliably determine the age of bloodstains on days 1, 7,
and 15 on a glass slide.

Fujihara et al. [45] conducted a similar study that
demonstrated the ability to distinguish between infant
and adult blood stains using micro-Raman spectroscopy.
Forensic practice requires the accurate identification not
only of bloodstains but also of their species. For example,
in the case of a traffic accident, the ability to distinguish
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between human and animal blood can play a crucial role
in the investigation and determination of the incident
circumstances. Many researchers are exploring the combined
use of vibrational spectroscopy and chemometrics to identify
blood species. Takamura et al. [46] presented an innovative
trapezoidal Raman spectrometer with surface-enhanced
Raman spectroscopy capabilities. They developed
a comprehensive spectral database that covered 26 species,
including humans. The researchers achieved an identification
accuracy rate of over 94% using convolutional neural network
algorithms, which proved effective and reliable for identifying
blood species [47].

Many other studies also evaluate spectroscopic techniques.
For example, Kumar et al. [48] used ATR-FTIR spectroscopy
to analyze infrared spectra of bloodstains and developed
a model using partial least squares regression to measure
their formation time. This made it possible to reliably determine
the age of a bloodstain within a range of 1to 175 days. Gautam
et al. [49] demonstrated the reliability and effectiveness
of Raman spectroscopy using the least absolute compression
and feature selection to determine the age of bloodstains
on different surfaces, such as floor tiles and linoleum, ranging
from 1 to 336 hours. The input power (2 MW) and exposure
time (15 seconds) were optimized to prevent unwanted heating
of or damage to the blood sample.

Therefore, current spectroscopic techniques such
as ATR-FTIR and Raman spectroscopy demonstrate high
potential for solving many forensic issues, including
blood identification, estimation of bloodstain formation,
and determination of blood species. The combination
of spectroscopic and chemometric techniques is essential
for reaching more accurate and reliable conclusions;
therefore, they are considered indispensable tools
in the arsenal of modern forensic experts.

Semen Stains

Semen is often found at crime scenes, especially in sexual
assault cases. Zha et al. [50] placed sperm samples on three
different substrates and analyzed them using ATR-FTIR
spectroscopy in combination with chemometric techniques,
such as PCA and partial least squares. This approach reliably
estimated the time of sperm stain formation in vitro, ranging
from 0.5 to 6 days. Investigators can use this data to verify
alibis, determine the time and date of a crime, and estimate
the time of death.

Semen species should also be determined. Wei et al. [51]
successfully applied classification models obtained using
PLS-DA and FTIR spectroscopy to identify humans and species,
such as rabbits, dogs, pigs, cows, and sheep, achieving
100% predictive accuracy. This highlights the practical value
of vibrational spectroscopy as a tool for identifying semen
species in real-world forensic investigations. Notably, this
approach to species identification does not require whole
sperm cells, which makes it flexible and suitable for analyzing
small quantities or partially destroyed material.
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Saliva

Saliva is a promising biological material for analysis
because its composition closely resembles that of blood.
Al-Hetlani et al. [52] analyzed 32 saliva samples using Raman
spectroscopy. The authors developed an artificial neural
network model that could classify smokers and nonsmokers
with 100% accuracy during external validation. Buchan
et al. [53] systematically evaluated the molecular spectral
fingerprint of saliva using a combination of Raman
spectroscopy and a hybrid artificial neural network algorithm.
The researchers used the spectral fingerprints of saliva
to stratify participants into the following age groups:
 Young adults (20-30 years)

+ Middle-aged adults (31-55 years)
« Older adults (>56 years)

In addition, they stratified the participants by sex in order
to identify unique molecular features in women and men.
Saliva is a promising material for forensic purposes because
its composition did not change significantly during a week.

CAUSE OF DEATH

A forensic autopsy relies heavily on identifying
macroscopic and microscopic presentations, and this limits
the ability to diagnose functional injuries, such as sudden
cardiac death, hypothermia, and poisoning [54]. Spectroscopy
is a non-destructive analytical technology that can be used
on biological samples without prior labeling. This opens
up new opportunities for forensic pathologists.

Pulmonary Edema

Lin et al. [55] demonstrated the need for isolating lung
interstitial fluid in cases of pulmonary edema to establish
the cause of death. The researchers used FTIR spectroscopy
to measure the infrared spectrum of interstitial fluid
and then integrated this data with a deep learning system based
on evolutionary neural networks to create a classification model.
Sensitivity and specificity of the model ranged from 0.9661
to 0.9856 and from 0.8774 to 0.9167, respectively. These findings
suggest that the combined use of FTIR spectroscopy with deep
learning algorithms could create an effective new diagnostic
tool for common causes of death, such as cardiomyopathy,
carbon monoxide poisoning, and brain hemorrhage.

In forensic practice, it can be challenging to clearly
identify fatal anaphylactic shock as the cause of death
because it requires an accurate differential diagnosis.
Forensic pathologists often need to evaluate subtle
morphological and physiological differences, so the lack
of relevant information can prevent them from reaching
a clear conclusion [56]. Forensic pathologists have reported
an increased volume of interstitial fluid in cases of fatal
anaphylactic shock [57]. Some authors have also noted
differences in lung fluid composition in different causes
of edema [58, 59]. Lin et al. [60] evaluated the potential
use of lung interstitial fluid to establish cause of death.
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They used a combination of FTIR spectroscopy and PCA
to identify characteristic differences in the composition
of proteins in the interstitial fluid that forms in the lungs
during anaphylactic shock. The researchers discovered
differences in the biochemical composition of interstitial lung
fluid between cases of fatal anaphylaxis and cases of death
due to other causes, including mechanical asphyxia, traumatic
brain injury, and acute heart failure. Infrared spectroscopy
and pattern recognition techniques revealed higher levels
of proteins, such as albumin and globulin, in interstitial
lung fluid associated with anaphylactic pulmonary edema.
Analysis of the secondary structure of the proteins revealed
a higher percentage of a-helices and turns, as well
as a lower percentage of tyrosine-rich proteins compared
with the control group. These findings were supported
by a PLS-DA model, which precisely classified cases
of anaphylactic shock. Therefore, PLS-DA could be used
to diagnose fatal anaphylaxis postmortem.

Sudden Cardiac Death

In forensic medicine, differential diagnosis is most
often required in cases of sudden death, which may be
caused by cardiovascular disease, including sudden cardiac
death [54, 61]. This condition is common in patients who
appear to be healthy. It is characterized by sudden onset
and rapid progression, leading to death. In some cases,
a standard autopsy is not enough to determine the cause
of death, and additional tests are required for accurate
identification. Traditional autopsy and microscopic techniques
often fail to distinguish between asphyxia and sudden cardiac
death due to the absence of the specific morphological
signs. Zhang et al. [62] conducted experiments using FTIR
spectroscopy combined with a support vector machine
to evaluate biochemical differences in lung tissue obtained
from rats and humans who died from asphyxia or sudden
cardiac death. The researchers found that rats that died
from asphyxia had higher levels of lipids and proteins in their
lung tissue than rats that died from sudden cardiac death.
These differences were confirmed by data obtained 24 hours
after the animals died, supporting that this technique can
determine the cause of death even after tissue decomposition
begins. In addition, seven of the nine identified differential
spectral features were found to be significant in human lung
tissue samples, meaning that this approach could be used
in forensic practice to diagnose causes of death [62].

Empirical data show that myocardial fibrosis is a common
manifestation of sudden cardiac death. Therefore, identifying
myocardial fibrosis is a promising new method for diagnosing
sudden cardiac death. This conclusion was confirmed by Yang
et al. [63]. The researchers obtained the infrared spectrum
of heart tissue using ATR-FTIR spectroscopy and then
evaluated it using PLS-DA. A total of 129 tissue blocks
taken from human hearts were examined using ATR-FTIR
spectroscopy and hematoxylin and eosin staining. The samples
were divided into the experimental group (with myocardial
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fibrosis) and the control group (without myocardial fibrosis).
The chemometrics classification results showed that
the sensitivity and specificity of the training dataset were
0.91 and 1.0, respectively, and the sensitivity and specificity
of the predictive dataset were 0.862 and 0.900. This study
demonstrated that ATR-FTIR spectroscopy combined
with chemometrics is an effective method for identifying
myocardial fibrosis.

Sudden cardiac death is often associated with myocardial
infarction. Spectral analysis revealed distinctive features
for each stage, and this finding was confirmed by the PCA.
An automated classifier based on artificial neural networks
successfully recognized these stages, and visualization using
pseudocolor images showed high agreement with histological
data. This approach has been shown to effectively
and objectively assess the histological stage of myocardial
infarction in forensic practice [64]. FTIR spectroscopy has
also been shown to effectively detect tissue indicative of early
myocardial ischemia, even when no morphological changes
are observed [65].

Drowning

Drowning is a type of mechanical asphyxia caused
by obstruction of the airways and alveoli, which leads
to impaired gas exchange, insufficient oxygen supply,
and carbon dioxide buildup in the body. In forensic practice,
drowning is usually confirmed by the detection of planktonic
diatoms [62, 66, 67]. However, it is often absent in people who
died from drowning and may be found in high concentrations
in people who died from other causes after spending a long time
in a diatom-rich environment. This complicates the diagnostic
process because of the need to accurately distinguish
between drowning and postmortem submergence. Different
postmortem submergence intervals may result in different
concentrations of planktonic diatoms, requiring precise
identification of these factors [68]. Xiong et al. [70] evaluated
the infrared spectrum of lung tissue samples using FTIR
spectroscopy combined with PLS-DA. The researchers found
that significant differences in amide | and amide Il levels could
effectively distinguish cases of drowning from postmortem
submergence. In addition, PCA revealed differences
between samples exposed to freshwater and saltwater, which
were associated with varying concentrations of the drowning
medium. Notably, the degree of lung tissue degradation did not
significantly impact the conclusions. PLS-DA-based models
have been developed for identifying drowning and postmortem
submergence in both fresh and saltwater environments. Both
models demonstrated high classification accuracy, achieving
94.4% and 100%, respectively. Averaged second-derivative
spectra and chemometric techniques revealed that differences
in protein structure and content are the primary factors
that distinguish drowning from postmortem submergence
cases. This pilot study demonstrated the effectiveness
of using ATR-FTIR spectroscopy combined with chemometrics
for forensic drowning diagnosis.
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EXPOSURE TO EXTREME TEMPERATURES

In practice, it is often necessary to differentiate
between sudden death and hypothermia. Ischemic heart
disease, brain hemorrhage, and other conditions often
develop at low temperatures, making it difficult to differentiate
them from deaths caused directly by hypothermia.
Although abnormal changes in the cardiovascular system
during hypothermia have been well studied, the exact role
of these changes in diagnosing thanatogenic processes is not
fully understood [70].

Lin et al. [71] demonstrated the effectiveness of using
FTIR spectroscopy combined with chemometrics to detect
pulmonary edema as a marker specific to fatal hypothermia.
A comparative analysis of spectral profiles revealed that
patients with pulmonary edema who died from hypothermia
had lung fluid with more B-sheet protein structures
than patients who died from other causes. A PLS-DA-based
postmortem diagnosis model for fatal hypothermia accurately
identified the causes of death in eight new cases. These
findings suggest the potential for using FTIR spectroscopy
in combination with chemometrics to diagnose fatal
hypothermia postmortem.

The hypothalamus plays a key role in regulating body
temperature, and its metabolism and functional activity also
change in response to internal temperature fluctuations. Lin
et al. [72] used FTIR spectroscopy and the random forest
method to evaluate the infrared spectrum of the hypothalamus
in order to determine the effects of fatal hypothermia
and hyperthermia. The study showed that fatal hyperthermia
was associated with increased total lipid content, decreased
levels of unsaturated fatty acids, and impaired cell membrane
mobility. However, significant increases in protein aggregation
abnormalities and nucleic acid levels were observed in fatal
hypothermia. These results suggest that FTIR spectroscopy
is an effective method for evaluating the biochemical properties
of hypothalamus under extreme temperatures. A similar
experiment evaluated lethality models under hyperthermia
and hypothermia by analyzing plasma using ATR-FTIR
spectroscopy combined with PLS-DA. The study revealed
lower levels of total lipids and long-chain fatty acids in cases
of fatal hyperthermia, as well as higher levels in cases of fatal
hypothermia, compared with the control group. In addition,
fatal hyperthermia was associated with the highest levels
of unsaturated lipids, whereas fatal hypothermia was
associated with the highest levels of carbonyl ester [73].
Previous studies have demonstrated the potential of using
metabolomics to diagnose fatal hypothermia by analyzing
the composition of the vitreous body. Spectroscopy, which
yields results comparable to metabolomics data, determines
the composition of test samples and is suitable for analyzing
liquid materials. Therefore, further research can evaluate
the potential use of spectroscopy to identify vitreous
components [74]. The combined use of metabolomics
and spectroscopy techniques can significantly improve
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the accuracy and reliability of diagnosing fatal outcomes
due to exposure to extreme temperatures, which
is crucial for forensic practice. Such research could lead
to new techniques for identifying cases of hypothermia-
and hyperthermia-related death more effectively based
on chemical and biochemical analysis. This could help
address practical challenges.

Diabetes Mellitus and Its Complications

Diabetic ketoacidosis can be fatal and complicate
the determination of cause of death during a routine
autopsy due to the absence of characteristic morphological
changes [75]. Wu et al. [76] used FTIR spectroscopy to evaluate
interstitial lung fluid obtained from corpses. The study used
PLS-DA to create a classification model. The results revealed
significant changes in the proteins found in the interstitial
fluid of patients with diabetic ketoacidosis, supporting
the potential use of FTIR for diagnosing and detecting this
condition.

In addition, a clear bidirectional correlation has been
established between diabetes mellitus and heart failure,
with diabetic cardiomyopathy being the primary cardiac
manifestation of diabetes mellitus [77]. Most diagnostic
techniques aim to identify late stages, whereas studies
of the early stages, when there are no obvious morphological
or functional changes to the myocardium, are limited.
However, FTIR technology has shown potential for diagnosing
diabetic cardiomyopathy in forensic practice. Carbonyl
esters, alkyne groups, and CH and CH2 lipids were identified
in the myocardium of diabetic mice. Significant changes
in the conformational transformation of the a-helixes
and B-sheets of total lipids, sugars, and proteins were reported
compared with healthy mice. These data suggest the potential
use of FTIR spectroscopy to confirm or exclude death due
to diabetic cardiomyopathy during an autopsy [78]. A similar
study used ATR-FTIR spectroscopy to evaluate various
body fluids in a mouse model of diabetic cardiomyopathy.
The results revealed a linear correlation between disease
severity and biomarker levels in plasma, saliva, urine,
and a mixture of plasma and saliva. These data highlight
the potential of ATR-FTIR spectroscopy for the rapid diagnosis
of diabetic cardiomyopathy [79].

Spectroscopy is a unique chemical analysis technique
used to determine the composition and molecular structure
of human tissue and other substances. This approach provides
the comprehensive and valuable information required
to determine the cause of death in a forensic investigation.
Unlike traditional analytical techniques, which require
complex sample preparation and separation, spectroscopy
can evaluate untreated samples directly, thereby optimizing
the process.

Spectroscopic techniques are faster and more accurate
and reliable tools for forensic investigations involving corpses
and biological evidence. The integrated use of machine
learning algorithms with various analytical technologies
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is expected to improve data analysis accuracy and test
sample identification, advance current forensic techniques,
and promote interdisciplinary collaboration.

DIRECTIONS FOR FUTURE RESEARCH

Raman and FTIR spectroscopy are two major analytical
techniques with significant practical potential and many
avenues for further development in forensic medicine. In FTIR
spectroscopy, a sample is exposed to infrared radiation,
the amount of light absorbed or transmitted is measured
and converted into a spectrum that reveals the molecular
composition of the sample. This technology is invaluable
to forensic medicine because it can detect evidence too
small to be seen by the naked eye. It is highly effective
at distinguishing between different types of bloodstains,
such as those from peripheral and menstrual blood, as well
as at detecting the presence and concentration of specific
molecules. FTIR spectroscopy is notable for its ability
to provide biochemical profiling of the hypothalamus
during fatal hyperthermia or fatal hypothermia.

Raman spectroscopy, in turn, measures scattered light
rather than absorbed or transmitted radiation. This approach
uses inelastic photon scattering to determine the molecular
composition of a sample and identify its chemical bonds.
Raman spectroscopy, for example, can accurately distinguish
between adult and infant bloodstains.

Both Raman and FTIR spectroscopy are invaluable,
non-destructive tools in forensic medicine that maintain
the integrity of samples for further investigation, if necessary.
Both techniques are valuable and important tools that
are rapidly evolving in terms of technology and practical
application. Technological advances in Raman and FTIR
spectroscopy can increase sensitivity, reduce detection time,
and improve overall efficiency.

In addition, new software and algorithms are being
developed to synergistically integrate these technologies
with vibrational spectroscopy, thereby improving the accuracy
and reliability of the obtained data. Further miniaturization
and automation of Raman and FTIR spectroscopy are expected
to make these technologies more practical and convenient.
These techniques will continue to be applied more widely
in forensic medicine, providing new opportunities to improve
the quality of investigations.
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